自己写的第一道费用流,图建好一波板子AC。不过还是有几个地方有点迷。
先来看看思想:题意是平面图上每个点有若干个人和若干个房子,保证人的数量等于房子的数量。每个格子上可以同时容纳所有人,也允许一个人在一个房子的格子上但不进入房子。求所有人都找到一个房子住所走的距离的和的最小值。
典型的最小费用最大流问题,用0点作为源点,给人编号,然后从源点引入一条边连接人,容量为1,费用为0,给房子编号,每个人到每个房子连一条边,容量为1,费用为他们的曼哈顿距离。然后再设置一个点作为汇点,所有的房子都与汇点连一条边,容量为1,费用为0.求一遍最小费用流就行了。
const int N=1e5+10;
struct Edge
{
int to,next,cap,flow,cost;
} e[N*10];
int head[N],tot;
int pre[N],dis[N];
int vis[N],Vis[201][201];
int n,m,tn;
char s[201][201];
void init(int num)
{
tot=0;//边的数量
tn=num;
memset(head,-1,sizeof(head));
}
void add(int u,int v,int cap,int cost)
{
e[tot].to=v,e[tot].cap=cap,e[tot].cost=cost,e[tot].flow=0;
e[tot].next=head[u];
head[u]=tot++;
e[tot].to=u,e[tot].cap=0,e[tot].cost=-cost,e[tot].flow=0;
e[tot].next=head[v];
head[v]=tot++;
}
bool spfa(int s,int t)
{
queue<int>q;
for(int i=0; i<=tn; i++)
{
dis[i]=INF;
vis[i]=0;
pre[i]=-1;
}
dis[s]=0;
vis[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u]; i+1; i=e[i].next)
{
int v=e[i].to;
if(e[i].cap>e[i].flow&&dis[v]>dis[u]+e[i].cost)
{
dis[v]=dis[u]+e[i].cost;
pre[v]=i;
if(!vis[v])
{
vis[v]=1;
q.push(v);
}
}
}
}
if(pre[t]==-1) return false;
return true;
}
int mincost_maxflow(int s,int t)
{
int cost=0;
while(spfa(s,t))
{
int Min=INF;
for(int i=pre[t]; i!=-1; i=pre[e[i^1].to])
if(Min>e[i].cap-e[i].flow)
Min=e[i].cap-e[i].flow;
for(int i=pre[t]; i!=-1; i=pre[e[i^1].to])
{
e[i].flow+=Min;
e[i^1].flow-=Min;
cost+=e[i].cost*Min;
}
}
return cost;
}
struct node
{
int x,y;
};
vector<node>M,H;
int main()
{
while(~scanf("%d%d",&n,&m))
{
if(n==0&&m==0) return 0;
M.clear();
H.clear();
int num=1,tmp=1;
for(int i=0; i<n; i++)
{
scanf("%s",s[i]);
for(int j=0; j<m; j++) if(s[i][j]!='.') tmp++;
}
init(tmp);
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
if(s[i][j]!='.')
{
if(s[i][j]=='m')
{
add(0,num,1,0);//0为源点;
M.push_back(node {i,j});
}
else
{
add(num,tmp,1,0);//m+h+1为汇点
H.push_back(node {i,j});
}
Vis[i][j]=num++;
}
for(int i=0; i<M.size(); i++)
{
node tmpM=M[i];
for(int j=0; j<H.size(); j++)
{
node tmpH=H[j];
int diss=abs(tmpM.x-tmpH.x)+abs(tmpM.y-tmpH.y);
add(Vis[tmpM.x][tmpM.y],Vis[tmpH.x][tmpH.y],1,diss);
}
}
printf("%d\n",mincost_maxflow(0,tmp));
}
return 0;
}