python计算峰度和偏度

本文通过一个简单的Python示例展示了如何利用Pandas库来计算数据集的偏度和峰度,这对于理解数据分布特性至关重要。
部署运行你感兴趣的模型镜像
import pandas as pd
x = [53, 61, 49, 66, 78, 47]
s = pd.Series(x)
print(s.skew())
print(s.kurt())

 

转载于:https://www.cnblogs.com/xiaochi/p/11610993.html

您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

### 如何使用Python计算峰度Python中,可以通过`pandas`库或`scipy.stats`模块来快速计算数据集的峰度。以下是详细的说明以及代码示例。 #### 使用Pandas库计算 通过`pandas.Series.skew()`方法可以直接计算给定序列的[^1]。此方法返回的是样本值,无需手动实现复杂的公式。 ```python import pandas as pd data = [11, 2, 4, 5, 8, 9, 10] series_data = pd.Series(data) # 计算 skewness = series_data.skew() print(f": {skewness}") ``` #### 使用Scipy库计算 如果需要更灵活的功能或者处理更大的数据集合,则可以借助`scipy.stats.skew()`函数[^4]。该函数同样支持多种参数配置以满足不同的需求。 ```python from scipy.stats import skew data = [11, 2, 4, 5, 8, 9, 10] # 计算 skewness_scipy = skew(data) print(f"SciPy : {skewness_scipy}") ``` #### 手动计算 为了深入理解的概念及其背后的数学原理,也可以尝试自己动手写一个基于公式的解决方案: \[ b_1=\frac{m_3}{s^3}=\frac{\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^3}{{(\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2}})^3} \][^4] 下面是一个简单的例子展示如何依据上述公式进行编程操作: ```python def manual_skewness(data): n = len(data) mean = sum(data)/n variance = sum((xi-mean)**2 for xi in data) / n std_deviation = variance ** 0.5 numerator = sum((xi - mean)**3 for xi in data) / n denominator = (std_deviation**3) return numerator/denominator data = [11, 2, 4, 5, 8, 9, 10] manual_result = manual_skewness(data) print(f"手动计算: {manual_result}") ``` #### 使用Pandas库计算峰度 类似于计算方式,我们还可以利用`pandas.Series.kurtosis()`方法轻松获得数据集中各元素关于均值分布情况下的尖锐程指标——即所谓的“峰态”。 ```python kurtosis_pandas = series_data.kurtosis() print(f"Pandas 峰度: {kurtosis_pandas}") ``` #### 使用Scipy库计算峰度 另外一种常用的方法便是采用来自科学计算包SciPy里的工具函数`scipy.stats.kurtosis()`来进行同样的运算过程[^4]: ```python from scipy.stats import kurtosis kurtosis_scipy = kurtosis(data) print(f"SciPy 峰度: {kurtosis_scipy}") ``` 以上就是几种常见的途径教你学会怎样运用Python语言高效便捷地求解统计数据特征之中的两个重要属性—斜性陡峭性! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值