第一篇博客,就从一个比较简单的题目入手吧!
题目:
题意:
有n个塔,编号为1~n, 编号为a,b的塔已经维修好,此外其他的塔都需要维修。塔的维修是有顺序的,每次只能维修编号为k的塔 (k为其余两座已维修好的 i 和 j 编号相加或相减即k=i-j或k=i+j)。有两个人轮流修塔,,直到一个人不能修塔则另一个人算获胜,问谁会获胜?(谁修完最后一个塔)
分析:
如果能维修编号为1的塔,则所有的塔都能维修(一直加1或一直减1则所有的数字都能取到),用类似于更相减损术的思想可以求得编号的最小值,故能维修的塔的编号的最小值为GCD(a,b);如果GCD(a,b)不为1,则应该直接求解[1,n]中有多少个GCD(a,b)的倍数即n/GCD(a,b).
代码如下:
#include <iostream> #include <cmath> #include <cstring> #include <cstdio> #include <algorithm> using namespace std; int gcd(int a,int b) { return a==0? b:gcd(b%a,a); } int main() { int T,a,b,n; int kase=0; scanf("%d",&T); while(T--) { scanf("%d",&n); scanf("%d %d",&a,&b); int g=gcd(a,b); int t=n/g-2; printf("Case #%d: ",++kase); if(t%2) puts("Yuwgna"); else puts("Iaka"); } return 0; }
第一篇博客,希望能一直写下去!仅仅是为了记录自己的学习历程!
坚持不懈地努力才能成为大神!