二分法查找

介绍摘自百度百科:
算法:当数据量很大适宜采用该方法。采用二分法查找时,数据需是排好序的。主要思想是:(设查找的数组区间为array[low, high])
(1)确定该区间的中间位置K(2)将查找的值T与array[k]比较。若相等,查找成功返回此位置;否则确定新的查找区域,继续二分查找。区域确定如下:a.array[k]>T 由数组的有序性可知array[k,k+1,……,high]>T;故新的区间为array[low,……,K-1]b.array[k]<T 类似上面查找区间为array[k+1,……,high]。每一次查找与中间值比较,可以确定是否查找成功,不成功当前查找区间缩小一半,递归找,即可。时间复杂度:O(log2n)。
//下面是一个扩展类
using System.Collections.Generic;
using System.Linq;
namespace DichotomizingAlgorithm
{
    public static class RewriteArray
    {
        /// <summary>
        /// 对数组功能进行扩展
        /// </summary>
        /// <param name="i"></param>
        /// <returns></returns>
        public static int[] Sort(this int[] i)
        {
           List<int> list=i.ToList();
           list.Sort();
           i = list.ToArray<int>();
           return i;
        }
    }
}
using System;


namespace DichotomizingAlgorithm
{
    class Program
    {
       static  int[] num=new int[10];
        static void Main(string[] args)
        {
            InitData(); //自动载入数据
            Console.WriteLine("数值:");
            Console.Write("排序前:");
            foreach (int item in num)
            {
                Console.Write(item + " ");
            }
            num=num.Sort(); //由小到大排序
            Console.Write("\n排序后:");
            foreach (int item in num)
            {
                Console.Write(item + " ");
            }
            Console.WriteLine("\n请输入要查询数字:");
            int target = int.Parse(Console.ReadLine());

            int result = BinSearch(num, num.Length, target)+1;
            Console.WriteLine(target+"位于第"+result+"");
            Console.ReadKey();
        }

        static void InitData()
        {
            for (int i = 0; i < num.Length; i++)
            {
                //由于Random.Next()生成的数据在短时间内会一样建议用下面的方法生成
                var Seed = Guid.NewGuid().GetHashCode();
                var value = new Random(Seed);
                num[i] =value.Next(1,100);
            }
        }

        /// <summary>
        /// 二分法查找数据位置  当数据量大时可用此方法
        /// </summary>
        /// <param name="num">欲查找数据的数组</param>
        /// <param name="count">数据的长度</param>
        /// <param name="target">被查找的目标</param>
        /// <returns></returns>
        static int BinSearch(int[] num,int count,int target)
        {
            int low = 0;
            int high = count - 1;
            int mid;    
            while(low<=high)
            {
                if(num[low]==target)
                {
                    return low;
                }
                else if(num[high]==target)
                {
                    return high;
                }
                //不用(high+low)/2 是为了防止数据溢出  
                mid = low + ((high - low) / 2); 
                if(num[mid]==target)
                {
                    return mid;
                }
                if(num[mid]<target)
                {
                    low = mid + 1;
                }
                else
                {
                    high = mid - 1;
                }         
            }
            return -1;  //没有找到的话返回-1
        }
    
    }
}

运行结果:

 

转载于:https://www.cnblogs.com/lichuangblog/p/8847782.html

内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值