求x!在k进制下后缀零的个数(洛谷月赛T1)

求x!在k进制下后缀和的个数

20分:
    求十进制下的x!后缀和的个数

40分:

   高精求阶乘,直接模拟过程 (我不管反正我不打,本蒟蒻最讨厌高精了)

60分
   
利用一个定理(网上有求x!在10进制、2进制下后缀和的个数的题,原理一样)

 证明:(转自http://www.cnblogs.com/dolphin0520/

    求n的阶乘某个因子a的个数,如果n比较小,可以直接算出来,但是如果n很大,此时n!超出了数据的表示范围,这种直接求的方法肯定行不通。其实n!可以表示成统一的方式。

    n!=(k^m)*(m!)*a   其中k是该因子,m=n/k,a是不含因子k的数的乘积

    下面推导这个公式

    n!=n*(n-1)*(n-2)*......3*2*1

    =(k*2k*3k.....*mk)*a      a是不含因子k的数的乘积,显然m=n/k;

    =(k^m)*(1*2*3...*m)*a

    =k^m*m!*a

    接下来按照相同的方法可以求出m!中含有因子k的个数。

    因此就可以求除n!中因子k的个数

上代码:

1 long long fac(long long x,long long y)   
2 {   
3     if (x<y)   
4         return 0; 
5     else   
6         return x/y+fac(x/y,y); 
7 }   

 

比如样例:求10!在40进制下后缀和的个数

X!转40进制只需不停地除以40,所以后缀零的个数等于x!能整除40 的个数。那么决定x!能整除多少个40的原因在于40的质因子(40=2*2*2*5=2^3+5^1),所以只要求在x!中40的某一质因子出现的次数,最后求出最少出现次数就行。根据质因子分解计算k的质因子p在x!中出现的次数:

可分解为x!=x*p^e的形式,e=x/p + x/p^2 + x/p^3+ ……,根据这个公式就能写出以下函数

再上个代码:

 1 #include<iostream>
 2 #include<cstdio>   
 3 #include<cmath>   
 4 #define N 3000001   
 5 using namespace std;
 6 long long a[N],b[N];//a数组存k的质因子,b数组存k的某质因子的个数 
 7 long long sum;   
 8 long long n,k; 
 9 long long ans=0x7fffffffffffffff,temp;    
10 void fenjie(long long s)  //求质因子及个数 (大概不需要解释了吧。。。) 
11 {    
12     long long i,j=0;   
13     for (i=2;i*i<=s;i++)   
14         if (s%i==0)   
15         {   
16             long long count=0;   
17             a[j]=i;   
18             while (s%i==0)   
19             {   
20                 count++;   
21                 s/=i;   
22             }   
23             b[j++]=count;   
24         }   
25     if (s>1)   
26     {    
27         a[j]=s;   
28         b[j++]=1;   
29     }   //可能容易遗漏,即k本身是质数 
30     sum=j;   
31 }   
32    
33 long long fac(long long x,long long y)   
34 {   
35     if (x<y)   
36         return 0;  //判断x是否小于y,若小于,结束统计(否则会一直做下去) 
37     else   
38         return x/y+fac(x/y,y); //统计n!中a[i]出现的次数 
39 }   
40    
41 int main()   
42 {   
43     while (scanf("%lld%lld",&n,&k)==2)  //多组数据嘿嘿嘿(反正有人因为这个没分) 
44     {   
45         fenjie(k);  
46         for(int i=0;i<sum;i++)  
47         {  
48             temp=fac(n,a[i]); 
49             temp/=b[i];  //注意,k可以分解为多个a[i],所以temp还要再除以a[i]的个数 
50             ans=ans>temp?temp:ans;   
51         }  
52         printf("%lld\n",ans);  
53     }   
54     return 0;   
55 }   

 

100分:

洛谷给出的终极巨无霸正解要用到Pollard rho算法来求k的质因子及其个数(反正我不会,而且代码超级长),我直接用了博客上的模板提交,发现确实不超时了,但莫名奇妙地wa了三个点。。。反正赛后改了数据还是ac了。

 

转载于:https://www.cnblogs.com/drurry/p/7634637.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值