7-17 汉诺塔的非递归实现(25 分)
借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c),即将N个盘子从起始柱(标记为“a”)通过借助柱(标记为“b”)移动到目标柱(标记为“c”),并保证每个移动符合汉诺塔问题的要求。
输入格式:
输入为一个正整数N,即起始柱上的盘数。
输出格式:
每个操作(移动)占一行,按柱1 -> 柱2
的格式输出。
输入样例:
3
输出样例:
a -> c a -> b c -> b a -> c b -> a b -> c a -> c
思路:试了下递归,然而第三个测试用例运行超时。非递归的话,不才到百度了,然后学到了学到了真的学到了。
一个美国学者总结得到:所有的汉诺塔移动可以总结为重复的两步,我们假设现在最小的圆盘在a柱子上,柱子为a,b,c
第一步:将最小圆盘移动到下一个柱子上,也就是b
第二步:对a柱子和c柱子进行顶上最小的元素进行判断,把小一点的那个圆盘移动到大一点的那个圆盘(有空则摞在空柱子上)。
重复上述两步就可以得到答案。
注意:这样得到的最后的答案不一定是摞在c上,如果N是偶数将摞在b上,所以如果N是偶数我们就令第二个柱子为c,第三个柱子为b,这样就一定最后是摞在c上的。
这题我有点儿像搬运工的感觉,那就转载来着下面吧
http://blog.csdn.net/yhf_naive/article/details/53384148
#include<stdio.h> #include<iostream> using namespace std; void f(int n, char a, char b, char c) { if (n == 1)cout << a<<" -> "<< c << endl; else { f(n - 1, a, c, b); cout << a << " -> " << c << endl; f(n - 1, b, a, c); } } int main() { int n; cin >> n; f(n, 'a', 'b', 'c'); return 0; }
#include<stdio.h> #include<stack> #include<stdlib.h> #include<iostream> using namespace std; char s[3] = { 'a', 'b', 'c' }; stack<int> a[3]; bool move(int before, int after) { if (a[before].empty()) return false; if (!a[after].empty()){ if (a[after].top() - a[before].top() < 0) return 0; } a[after].push(a[before].top()); a[before].pop(); printf("%c -> %c\n", s[before], s[after]); return true; } int main() { int N, count = 0; cin >> N; for (int i = 0; i < N; i++) a[0].push(N - i); if (N % 2 == 1) { s[1] = 'c'; s[2] = 'b'; } while (++count){ move((count - 1) % 3, count % 3); if (!move((count - 1) % 3, (count + 1) % 3)) if (!move((count + 1) % 3, (count - 1) % 3)) break; } return 0; }