Python 函数 2
函数的参数
位置参数(普通,正常的参数)
随便编写一个求x^n的值的函数power(x, n)
:
def power(x, n):
s = 1
while n > 0:
n = n - 1
s = s * x
return s
我们调用这个函数,需要传入两个参数,这个两个参数也叫做位置参数:
>>> power(5, 2)
25
如果我们给power()
函数只传入1个参数,会这样:
>>> power(5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: power() missing 1 required positional argument: 'n'
显然会报错,这个时候,提示的错误大概意思是说:你需要在传入一个n
参数。
如果我们就像给
power(x, n)
函数传入1个参数,要怎么做?这个时候,就是要是默认参数了。
默认参数
默认参数在其他高级语言里也用,C/C++也有,你可以一时想不起来,但是,只要上代码,你就知道什么是默认参数了:
def power(x, n=2):
s = 1
while n > 0:
n = n - 1
s = s * x
return s
现在,这个形参n
就是默认参数。
Q:使用默认参数有什么好处?
A:最大的好处是能降低调用函数的难度。
怎么就降低了函数的调用难度呢:一共两个方面:
1. 参数的数量。对于power(x, n)
函数,参数数量可以是1个,也可以是2个。
2. 参数的顺序。如果有更多的参数,我们可以这样使用函数power(2, n=2)
,默认参数对输入顺序没有要求。
对于默认参数一定要注意一点:必须使用不变对象,想:list
这种可变的参数:不要使用。举例:
def add_end(L=[]):
L.append('END')
return L
这个函数,你不给它传入参数时,如果你多次调用,会得到下面的结果:
>>> add_end()
['END']
>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']
如果你给它参数参数,它却可以正常的使用,不会出现上面的错误结果:
>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']
Q:这是为什么?
A:解释:每次调用该函数,如果改变了L
的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]
了。
所以,结论就是,add_end()
函数你写的不对,正确的写法是这样的:
def add_end(L=None): if L is None: L = [] L.append('END') return L
现在就对了,你可以试试,不管你调用几次,都没有问题。
可变参数
Q:什么是可变参数?
A:就是指针!
举个例子,看下面的程序:
def calc(*numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum
这个calc(*numbers)
函数,我可以随便个它传入参数:
>>> calc(*[1, 2, 3])
14
>>> calc(*(1, 3, 5, 7))
84
>>> nums = [1, 2, 3]
>>> calc(nums[0], nums[1], nums[2])
14
>>> calc(1, 2, 3)
14
>>> calc(1, 3, 5, 7)
84
>>> calc()
0
这个可变参数几乎无敌,它允许你传入0个或任意个参数。(解释:这些可变参数在函数调用时自动组装为一个tuple。)所以说,玩转指针,你就牛逼了。
关键字参数
Q:什么是关键字参数?
A:**para
这样的参数就是所谓的关键字参数。
举例:
def person(name, age, **kw):
print('name:', name, 'age:', age, 'other:', kw)
这个**kw
参数可以不赋值,也可以随便赋值:
>>> person('Michael', 30)
name: Michael age: 30 other: {}
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}
看到了吧,这就是关键字参数。
Q:那它究竟有什么作用?
A:也是,降低了函数的调用难度,并且可以扩展函数的功能。比如,这个person()
函数,我们只需要保证能够接受到name
和age
这个两个参数就可以,如果调用者愿意提供更多的参数,我们也能收到。使用起来相当的灵活。
>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, city=extra['city'], job=extra['job'])
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **extra)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
注意:kw获得的dict是extra的一份拷贝,对kw的改动不会影响到函数外的extra。
命名关键字参数
命名关键字参数就是:调用者依然可以不受限制的向person()
函数传入形参,但是我们只接受指定的几个参数。
def person(name, age, *, city, job):
print(name, age, city, job)
其中*
后面的参数就都是命名关键字参数。(命名关键字参数需要一个特殊分隔符*
)。
第2种写法:
def person(name, age, *args, city, job):
print(name, age, args, city, job)
如果函数定义中已经有了一个可变参数,那么后面跟的形参就都是命名关键字参数,不需要特意在指定特殊分隔符*
。
严重注意:
命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,即使参数的顺序正确,调用依然报错:
>>> person('Jack', 24, 'Beijing', 'Engineer') Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: person() takes 2 positional arguments but 4 were given >>> person('Jack', 24, city = 'Beijing', job = 'Engineer') Jack 24 Beijing Engineer
解释:
如果命名关键字参数没有写参数名,Python解释器把这4个参数均视为位置参数。
所以,既然命令关键字参数是可选输入的,所以命令关键字参数需要些默认值。程序还要改:
def person(name, age, *, city='Beijing', job='Engineer'): print(name, age, city, job)
这样,程序就完美了。
总结:
1. 必须使用*
作为特殊分隔符,它是为Python解释器识别位置参数和命名关键字参数用的。
2. 如果有可变参数,就不需要特意在加*
了,可变参数后面跟着的默认为命名关键字参数。
3. 命名关键字参数必须赋默认值。
参数组合
Python中,函数的形参是上面这么多的形式。如果组合使用,顺序必须注意:必选参数、默认参数、可变参数、命名关键字参数和关键字参数, 这样的顺序。
def f1(a, b, c=0, *args, **kw):
print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw)
def f2(a, b, c=0, *, d, **kw):
print('a =', a, 'b =', b, 'c =', c, 'd =', d, 'kw =', kw)
调用:
>>> f1(1, 2)
a = 1 b = 2 c = 0 args = () kw = {}
>>> f1(1, 2, c=3)
a = 1 b = 2 c = 3 args = () kw = {}
>>> f1(1, 2, 3, 'a', 'b')
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
>>> f1(1, 2, 3, 'a', 'b', x=99)
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}
>>> f2(1, 2, d=99, ext=None)
a = 1 b = 2 c = 0 d = 99 kw = {'ext': None}
更可气的是:通过一个tuple和dict,你也可以调用上述函数:
>>> args = (1, 2, 3, 4)
>>> kw = {'d': 99, 'x': '#'}
>>> f1(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'d': 99, 'x': '#'}
>>> args = (1, 2, 3)
>>> kw = {'d': 88, 'x': '#'}
>>> f2(*args, **kw)
a = 1 b = 2 c = 3 d = 88 kw = {'x': '#'}
小技巧:
对于任意函数,都可以通过类似func(*args, **kw)
的形式调用它,无论它的参数是如何定义的。
- 可见Python语言的灵活。如果使用C++取实现一个这种函数的功能,需要写多少重载方法啊!
- Python非常适合实验室做程序。就是,突然有一个灵感涌现,我们快速的使用Python编写一段脚本程序,来测试一下这个灵感的可行性。
递归函数
这的重点是讲Python,而不是递归。要说起递归,那是有很多好讲的,有许多的技巧。递归的思想很简单,但是写起程序来很绕。
随便写一个:
def fact(n):
if n==1:
return 1
return n * fact(n - 1)
Python使用自己写的递归函数时,注意的事情就是:传入的值不要太大,容易产生栈溢出错误。
>>> fact(1000)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in fact
...
File "<stdin>", line 4, in fact
RuntimeError: maximum recursion depth exceeded in comparison