自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Echo_Wish的博客

Echo_Wish的个人博客

  • 博客(311)
  • 收藏
  • 关注

原创 使用Python实现图像分类与识别模型

图像分类与识别是指将图像自动分类到预定义的类别中,或者识别图像中的对象、场景或特征的任务。例如,可以将猫和狗的图像分类到不同的类别中,或者识别图像中的人脸或车辆等。

2024-04-22 08:47:51 48

原创 使用Python实现文本分类与情感分析模型

文本分类与情感分析模型。

2024-04-21 14:49:51 83

原创 使用Python实现时间序列预测模型

时间序列预测是根据过去的观测数据来预测未来的数值。时间序列数据是按时间顺序排列的一系列观测值,例如股票价格、气温、销售额等。时间序列预测可以帮助我们分析数据的趋势、周期性和季节性,从而做出合理的预测。

2024-04-20 08:43:22 172

原创 使用Python实现超参数调优

超参数是在模型训练之前需要设置的参数,它们不是通过训练数据学习得到的,而是由人工设置的。常见的超参数包括学习率、正则化参数、树的深度等。选择合适的超参数对模型的性能至关重要。

2024-04-19 08:58:38 736

原创 使用Python实现交叉验证与模型评估

交叉验证是一种通过将数据集划分为训练集和测试集,并多次重复这个过程来评估模型性能的方法。它能够更准确地估计模型在未知数据上的性能,避免了因为单次数据划分不同而导致的模型评估结果的不稳定性。

2024-04-18 09:00:07 254

原创 使用Python实现集成学习算法:Bagging与Boosting

Bagging(自举聚合):Bagging是一种并行式的集成学习方法,它通过随机抽样生成多个训练子集,然后基于每个子集训练一个弱学习器,最后将这些弱学习器的预测结果进行平均或投票来得到最终的预测结果。Bagging的典型代表是随机森林算法。Boosting(提升法):Boosting是一种串行式的集成学习方法,它通过逐步提升每个弱学习器的性能来构建一个强大的模型。Boosting算法会在每一轮迭代中调整数据的权重,使得之前的模型在错误样本上表现更好,从而提高整体模型的性能。

2024-04-17 09:30:48 284

原创 使用Python实现特征选择与降维技术

特征选择与降维技术是通过选择最重要的特征或将数据映射到一个低维空间来减少数据集的维度。特征选择通过评估每个特征与目标变量之间的相关性来选择最相关的特征。降维技术则是通过将数据投影到一个低维空间来保留尽可能多的信息。这些技术有助于减少数据集的复杂性,提高模型的可解释性和泛化能力。

2024-04-16 09:09:50 364

原创 使用Python实现主成分分析(PCA)

主成分分析算法通过寻找数据中的主成分(即方差最大的方向)来实现降维。它首先计算数据的协方差矩阵,然后通过特征值分解或奇异值分解来找到协方差矩阵的特征向量,这些特征向量构成了新的坐标系。PCA算法会选择最大的k个特征值对应的特征向量,这些特征向量构成了数据的主成分,然后将原始数据投影到这些主成分上,从而实现降维。

2024-04-15 08:48:57 504

原创 使用Python实现高斯混合模型聚类算法

高斯混合模型算法假设数据集是由若干个高斯分布组成的,每个高斯分布都代表一个簇。算法的目标是通过最大化数据集的似然函数来找到最佳的高斯混合模型参数,包括每个簇的均值、协方差矩阵和权重。通过这些参数,我们可以计算每个数据点属于每个簇的概率,从而进行聚类。

2024-04-14 13:18:27 248

原创 使用Python实现DBSCAN聚类算法

DBSCAN算法通过检测数据点的密度来发现簇。它定义了两个重要参数:ε(eps)和MinPts。给定一个数据点,如果它的ε邻域内至少包含MinPts个数据点,则该点被认为是核心点。具有相同簇标签的核心点是直接密度可达的,而没有足够邻居的非核心点被标记为噪声点。DBSCAN算法通过这些核心点和密度可达关系来构建簇。

2024-04-13 08:55:21 465

原创 使用Python实现层次聚类算法

层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算数据点之间的相似度(距离)来构建一个树形结构,其中每个节点代表一个簇。在自底向上的凝聚层次聚类中,每个数据点首先被视为一个簇,然后根据它们之间的相似度逐渐合并成更大的簇,直到所有数据点都合并到一个簇中。在自顶向下的分裂层次聚类中,所有数据点首先被视为一个簇,然后根据它们之间的相似度逐渐分裂成更小的簇,直到每个数据点都成为一个簇。

2024-04-12 08:45:53 345

原创 使用Python实现K均值聚类算法

K均值算法是一种迭代的聚类算法,其基本思想是通过不断迭代优化簇的中心点位置,使得每个样本点到其所属簇的质心的距离最小化。算法首先随机初始化K个质心,然后将每个样本点分配给距离最近的质心所属的簇,然后更新每个簇的质心,重复这个过程直到簇不再发生变化或达到最大迭代次数。

2024-04-11 08:59:06 219

原创 使用Python实现朴素贝叶斯算法

朴素贝叶斯算法是一种基于概率统计的分类方法,它假设每个特征与其他特征之间是相互独立的。朴素贝叶斯算法通过计算每个类别的概率分布来对新样本进行分类,选择具有最高概率的类别作为预测结果。

2024-04-10 08:54:33 401

原创 使用Python实现支持向量机算法

支持向量机是一种监督学习算法,其基本思想是在特征空间中找到一个最优的超平面,将不同类别的数据分开。支持向量机最大化了分类边界与最近的数据点之间的距离,从而提高了模型的泛化能力。支持向量机还可以通过核函数来处理非线性分类问题。

2024-04-09 08:55:18 472

原创 使用Python实现随机森林算法

#什么是随机森林算法?随机森林是一种集成学习方法,它通过构建多个决策树并取其投票结果(分类问题)或平均值(回归问题)来进行预测。随机森林的核心思想是每个决策树都是在不同的数据子集上训练的,并且每个决策树都是随机选择特征进行分裂的,从而减少过拟合的风险。###使用Python实现随机森林算法####1. 导入必要的库。

2024-04-08 08:38:41 620

原创 使用Python实现决策树算法

决策树是一种基于树形结构的机器学习算法,它通过对输入数据进行逐步的判断和分割来构建一个预测模型。在决策树中,每个节点代表一个特征,每个分支代表一个判断条件,每个叶子节点代表一个类别(或回归值)。

2024-04-07 10:15:35 371

原创 使用Python实现K近邻算法

K近邻算法是一种基于实例的学习方法,其核心思想是:如果一个样本在特征空间中的K个最相似(即距离最近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法不需要训练过程,而是直接基于训练数据集对新样本进行分类或回归。

2024-04-06 08:56:40 413

原创 使用Python实现逻辑回归模型

逻辑回归是一种用于建立因变量与自变量之间关系的统计模型,其输出值表示给定输入值属于某个类别的概率。逻辑回归模型的输出值通过一个逻辑函数(sigmoid函数)进行转换,将线性组合的输入映射到0和1之间。

2024-04-05 08:54:54 505

原创 使用Python实现基本的线性回归模型

线性回归是一种用于建立因变量与自变量之间线性关系的统计模型。

2024-04-04 09:48:12 409

原创 Python人工智能基础知识:理解神经网络与机器学习的基本概念

神经网络是受到生物神经元启发的数学模型,它由多个神经元(节点)组成,通过连接权重(weights)和激活函数(activation function)来处理输入数据并生成输出。神经网络可以用于解决分类、回归、聚类等各种问题。机器学习是一种人工智能的分支,其目标是让计算机能够从数据中学习模式并做出预测或决策,而无需明确编程。机器学习可以分为监督学习、无监督学习和强化学习等不同类型。

2024-04-03 08:49:40 561

原创 从零开始学习Python人工智能:神经网络和机器学习入门指南

神经网络是一种受到生物神经元启发的数学模型,它由多个神经元(节点)组成,通过连接权重(weights)和激活函数(activation function)来处理输入数据并生成输出。神经网络可以用于解决分类、回归、聚类等各种问题。机器学习是一种人工智能的分支,其目标是让计算机能够从数据中学习模式并做出预测或决策,而无需明确编程。机器学习可以分为监督学习、无监督学习和强化学习等不同类型。

2024-04-02 09:13:33 491

原创 探索Python中的强化学习:DQN

DQN是一种基于深度神经网络的强化学习方法,其核心思想是利用神经网络来近似Q-value函数,从而学习最优策略。DQN通过使用经验回放和固定Q-target网络来稳定训练过程,从而解决了传统Q-learning在高维状态空间下的训练不稳定性的问题。

2024-04-01 08:53:15 741

原创 探索Python中的强化学习:SARSA

SARSA是一种基于值函数的强化学习方法,其名字来源于状态(State)、行动(Action)、奖励(Reward)、下一个状态(Next State)。它通过迭代地更新Q-value(行动-状态值函数),使得智能体可以根据当前状态和选择的行动,学习到最优策略,并逐步优化策略以获得最大的累积奖励。

2024-03-31 13:19:57 462

原创 探索Python中的强化学习:Q-learning

Q-learning是一种基于值函数的强化学习方法,用于学习在不同状态下采取不同行动的价值。它通过迭代地更新Q-value(行动-状态值函数),使得智能体可以根据当前状态选择最优的行动,并逐步优化策略以获得最大的累积奖励。

2024-03-30 08:51:07 438

原创 探索Python中的推荐系统:混合推荐模型

混合推荐模型是一种将多个推荐算法或模型组合起来的方法,以综合利用各个模型的优势,从而提高推荐的准确性和多样性。通过混合多种推荐算法,可以弥补单一模型的不足,并实现更加全面和个性化的推荐。

2024-03-29 08:50:29 512

原创 探索Python中的推荐系统:内容推荐

内容推荐是一种基于内容相似度的推荐方法,它通过分析内容的属性、特征或标签等信息,找到与用户感兴趣的内容相似的其他内容,并推荐给用户。与协同过滤不同,内容推荐不依赖于用户-物品之间的相互作用,而是根据内容本身的特征来进行推荐。

2024-03-28 08:32:04 425

原创 探索Python中的推荐系统:协同过滤

协同过滤是一种基于用户或物品的相似性来进行推荐的方法。它假设用户喜欢的物品与其类似的其他物品或与其具有相似偏好的其他用户所喜欢的物品也会受到用户的喜爱。因此,协同过滤主要分为两种类型:用户协同过滤(User-Based Collaborative Filtering):基于用户之间的相似性来进行推荐。当一个用户喜欢了一件物品,系统会推荐给他类似的其他用户喜欢的物品。物品协同过滤(Item-Based Collaborative Filtering):基于物品之间的相似性来进行推荐。

2024-03-27 08:48:06 407

原创 探索Python中的集成方法:Stacking

Stacking,又称为堆叠泛化(Stacked Generalization),是一种模型集成方法,与Bagging和Boosting不同,它并不直接对训练数据集进行采样或权重调整,而是通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而得到最终的预测结果。

2024-03-26 08:48:25 682

原创 深入理解Python中的集成方法:Boosting

Boosting是一种迭代的集成学习方法,其基本思想是通过串行训练多个弱学习器,并对每个学习器的预测结果进行加权组合,从而得到一个更强大的模型。与Bagging不同,Boosting是通过不断调整数据集的权重,使得后续的学习器重点关注之前学习器预测错误的样本,从而逐步提高整体模型的性能。

2024-03-25 08:54:55 763

原创 探索Python中的集成方法:Bagging

Bagging是一种基于自助采样(Bootstrap Sampling)和聚合(Aggregation)的集成方法。其基本思想是通过对训练数据集进行有放回的随机抽样,从而生成多个不同的子集,然后在每个子集上训练一个基本模型。最后,通过对这些基本模型的预测结果进行平均或投票来得到最终的预测结果。

2024-03-24 12:40:32 356

原创 探索Python中的聚类算法:层次聚类

层次聚类是一种自下而上或自上而下的聚类方法,它通过逐步合并或分割样本点来形成一个簇的层次结构。在层次聚类中,每个样本点最初被视为一个单独的簇,然后通过计算样本点之间的相似度或距离来逐步合并或分割簇,直到达到停止条件。层次聚类是一种强大而灵活的聚类算法,能够以层次结构的方式将数据集中的样本点划分为不同的簇。通过本文的介绍,你已经了解了层次聚类算法的原理、实现步骤以及如何使用 Python 进行编程实践。希望本文能够帮助你更好地理解和应用层次聚类算法。

2024-03-23 08:56:59 439

原创 探索Python中的聚类算法:DBSCAN

DBSCAN 是一种基于密度的聚类算法,它将样本点分为核心点、边界点和噪声点。DBSCAN 的核心思想是,如果一个样本点的邻域内包含足够多的样本点,则将该点视为核心点,并将其邻域内的所有样本点都视为一个簇。通过这种方式,DBSCAN 能够发现任意形状的簇,并且能够自动处理噪声点。DBSCAN 算法是一种强大且灵活的聚类算法,能够有效地处理任意形状的簇,并且能够自动处理噪声点。通过本文的介绍,你已经了解了 DBSCAN 算法的原理、实现步骤以及如何使用 Python 进行编程实践。

2024-03-22 09:07:38 485

原创 探索Python中的聚类算法:K-means

K-means 是一种基于距离的聚类算法,它将数据集中的样本划分为 K 个不同的簇,使得同一簇内的样本之间的距离尽可能小,而不同簇之间的距离尽可能大。K-means 算法是一种简单而有效的聚类算法,在许多实际问题中都有着广泛的应用。通过本文的介绍,你已经了解了 K-means 算法的原理、实现步骤以及如何使用 Python 进行编程实践。希望本文能够帮助你更好地理解和应用 K-means 算法。

2024-03-21 08:55:36 529

原创 我的创作纪念日

最初成为创作者的初心:创作的过程中的收获:

2024-03-20 10:39:20 206

原创 探索Python中的基础算法:梯度提升机(GBM)

梯度提升机是一种集成学习方法,它通过将多个弱学习器组合起来构建一个强大的模型。在GBM中,每个弱学习器都是基于决策树的,它们是通过梯度下降的方法来逐步构建的。梯度提升机是一种强大的集成学习算法,它在许多实际问题中都表现出色。通过本文的介绍,你已经了解了梯度提升机的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用梯度提升机算法。

2024-03-20 08:56:47 255

原创 Python基础算法解析:随机森林

随机森林是一种集成学习方法,它结合了多个决策树来进行分类或回归。每个决策树都是基于对输入特征的随机子集进行训练的。随机森林的预测结果是基于所有决策树的预测结果的综合。随机森林是一种强大的机器学习算法,它在许多实际问题中都表现出色。通过本文的介绍,你已经了解了随机森林的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用随机森林算法。

2024-03-19 08:52:42 439

原创 Python基础算法解析:决策树

决策树是一种基于树结构的分类和回归算法,它通过一系列的问题对数据进行拆分,直到最终得到预测结果。决策树的每个内部节点表示一个特征或属性的测试,每个分支代表测试的结果,而每个叶节点代表一个类别标签或者回归值。决策树是一种直观且易于理解的机器学习算法,在实际应用中有着广泛的应用。通过本文的介绍,你已经了解了决策树的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用决策树算法。

2024-03-18 08:47:35 575

原创 Python基础算法解析:支持向量机(SVM)

支持向量机是一种监督学习算法,它可以用于分类和回归任务。在分类问题中,SVM的目标是找到一个超平面,将不同类别的数据点分开。这个超平面的选择是通过最大化间隔(即两个类别最近的数据点到超平面的距离)来完成的。SVM不仅可以处理线性可分的情况,还可以通过核技巧处理非线性可分的情况。支持向量机是一种强大且灵活的分类算法,它在许多实际问题中都表现出色。通过本文的介绍,你已经了解了支持向量机的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用支持向量机算法。

2024-03-17 11:40:21 529

原创 Python基础算法解析:K最近邻算法

K最近邻算法是一种基于实例的学习方法,其核心思想是:如果一个样本在特征空间中的k个最相似(即最近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法不需要训练模型,而是利用训练集中的数据进行预测。K最近邻算法是一种简单而强大的监督学习算法,适用于分类和回归问题。通过本文的介绍,你已经了解了KNN算法的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用KNN算法。

2024-03-16 08:58:48 363

原创 Python基础算法解析:逻辑回归

逻辑回归是一种基于概率的统计分类技术,主要用于二分类问题。尽管名字中含有“回归”,但实质上是一种分类算法。逻辑回归通过将特征值的线性组合传递给一个称为sigmoid函数的激活函数,将线性输出转换为概率输出,从而进行分类。逻辑回归是一种简单而强大的分类算法,在许多实际应用中都表现出色。通过本文的介绍,你已经了解了逻辑回归的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用逻辑回归算法。

2024-03-15 09:29:37 1108

图吧工具箱最新版 - 实时同步更新

图吧工具箱,是开源、免费、绿色、纯净的硬件检测工具合集,专为所有计算机硬件极客、DIY爱好者、各路大神及小白制作。集成大量常见硬件检测、评分工具,一键下载、方便使用。 专业 · 专注于收集各种硬件检测、评分、测试工具,常见工具均有收集。 纯净 · 无任何捆绑强制安装行为,不写入注册表,没有任何敏感目录及文件操作,无任何诱导、孔吓、欺乍等操作。 绿色 · 仅提供自解压格式的压缩包(可右键使用任意解压工具打开),无需安装、注册等复杂操作,解压即可使用。用完可直接删除,无需卸载。

2023-12-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除