题目背景
话说我大一中的运动会就要来了,据本班同学剧透(其实早就知道了),我萌萌的初二年将要表演腰鼓[喷],这个无厘头的题目便由此而来。
Ivan乱入:“忽一人大呼:‘好一个安塞腰鼓!’满座寂然,无敢哗者,遂与外人间隔。”
题目描述
设想一下,腰鼓有两面,一面是红色的,一面是白色的。初二的苏大学神想给你这个oier出一道题。假设一共有N(1<=N<=20,000)个同学表演,表演刚开始每一个鼓都是红色面朝向观众,舞蹈老师会发出M(1<=M<=20,000)个指令,如果指令发给第i个表演的同学,这位同学就会把腰鼓反过来,如果腰鼓之前是红色面朝向观众的,那么就会变成白色面朝向观众,反之亦然。那么问题来了(!?),在老师每一次发出指令后,找到最长的连续的一排同学,满足每相邻的两个手中的腰鼓朝向观众的一面互不相同,输出这样一排连续的同学的人数。
输入输出格式
输入格式:第一行有两个整数, 分别为表演的同学总数N, 和指令总数M。
之后M行, 每行有一个整数i: 1<=i<=N, 表示舞蹈老师发出的指令。
输出格式:输出有M行, 其中每i行有一个整数.
表示老师的第i条指令发出之后, 可以找到的满足要求的最长连续的一排表演同学有多长?
输入输出样例
6 2
2
4
3
5
说明
Huangc温馨提示:其实数据根本没你想象的那么大。。。[坏笑]、、
Solution:
本题线段树常规经典题。。。(话说洛谷标签有毒~本题怎么可能是道黄题嘛`!~)
维护以下信息:区间左、右端点,从左端点开始的最大长度,从中间某点到右端点结束的最大长度,整个区间的满足条件的最大长度。
每次更新时,从左右儿子转移,记得考虑一下左右儿子区间并起来的情况,瞎搞一下就$OK$了。
代码:
#include<bits/stdc++.h> #define il inline #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define Max(a,b) ((a)>(b)?(a):(b)) using namespace std; const int N=100005; int n,m,lsu[N],rsu[N],lc[N],rc[N],asu[N]; il int gi(){ int a=0;char x=getchar(); while(x<'0'||x>'9')x=getchar(); while(x>='0'&&x<='9')a=(a<<3)+(a<<1)+x-48,x=getchar(); return a; } il void pushup(int rt,int len){ lsu[rt]=lsu[rt<<1],rsu[rt]=rsu[rt<<1|1]; lc[rt]=lc[rt<<1],rc[rt]=rc[rt<<1|1]; asu[rt]=Max(Max(lsu[rt<<1],Max(rsu[rt<<1|1],Max(rsu[rt<<1],lsu[rt<<1|1]))),Max(asu[rt<<1],asu[rt<<1|1])); if(rc[rt<<1]!=lc[rt<<1|1]){ asu[rt]=Max(asu[rt],rsu[rt<<1]+lsu[rt<<1|1]); if(lsu[rt<<1]==(len-(len>>1)))lsu[rt]+=lsu[rt<<1|1]; if(rsu[rt<<1|1]==(len>>1))rsu[rt]+=rsu[rt<<1]; } } il void build(int l,int r,int rt){ if(l==r){lsu[rt]=rsu[rt]=asu[rt]=1;return;} int m=l+r>>1; build(lson);build(rson); pushup(rt,r-l+1); } il void update(int x,int l,int r,int rt){ if(l==r){lc[rt]^=1;rc[rt]^=1;return;} int m=l+r>>1; if(x<=m)update(x,lson); else update(x,rson); pushup(rt,r-l+1); } int main(){ n=gi(),m=gi(); int x; build(1,n,1); while(m--){ x=gi();update(x,1,n,1); printf("%d\n",asu[1]); } return 0; }