本文所述的MATLAB代码实现了一种基于接收信号强度指示(RSSI)的三维无线定位算法,结合容积卡尔曼滤波(CKF)对动态目标的运动轨迹进行优化。程序支持自适应锚点数量,适用于复杂环境下的高精度定位需求。
程序介绍
功能模块与流程
-
环境初始化与基站生成
- 通过正弦/余弦函数生成三维空间中随机分布的锚点(基站),并添加微小偏移以模拟实际部署场景。
- 设置RSSI信号衰减模型参数(
RSSI_0
为参考距离信号强度,nn
为路径损耗因子),模拟真实环境中的信号衰减特性。
-
目标运动与RSSI测量
- 生成目标的动态轨迹(三维正弦运动叠加线性位移),并基于RSSI模型计算各锚点与目标间的距离,加入高斯噪声模拟测量误差。
- 调用
rssi_localization
函数,通过加权最小二乘法解算初始位置估计,构建非线性观测方程。
-
CKF滤波优化
- 状态模型:假设目标运动为匀速模型(含过程噪声),状态向量为三维坐标。
- 容积点采样:通过Cholesky分解生成容积点,经非线性状态转移函数(含运动方程)传播,计算预测均值和协方差。
- 量测更新:利用观测值(RSSI定位结果)修正状态估计,通过卡尔曼增益调整权重,输出滤波后的轨迹。
-
可视化与误差分析
- 绘制三维轨迹图,对比真实值、观测值、CKF估计值及未滤波的惯导模拟结果。
- 计算各轴误差及均方根误差(RMSE),量化不同方法的定位精度。
算法核心与创新点
-
RSSI定位的改进
- 采用自适应锚点数量设计,通过伪逆法求解超定方程组,避免传统三边定位对锚点几何分布的强依赖。
- 引入路径损耗因子动态调整,增强模型对不同环境(如室内多径效应)的适应性。
-
CKF滤波的优势
- 对比扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF),CKF通过球面径向容积准则采样,以三阶精度逼近非线性积分,显著降低高维状态估计的误差。
- 代码中通过
chol(P)
分解协方差矩阵生成容积点,避免UKF参数调节的复杂性,提升数值稳定性。
-
多源数据融合
- 将RSSI观测值与运动模型结合,通过CKF实现传感器融合,有效抑制RSSI噪声和惯导累积误差,适用于复杂动态环境。
应用场景与扩展性
-
典型应用
- 室内导航:商场、医院等场景的人员/设备追踪。
- 工业物联网:仓储机器人定位、AGV轨迹优化。
- 应急救援:消防员在复杂建筑内的实时位置监控。
-
扩展方向
- 多模态融合:结合IMU或UWB数据,进一步提升鲁棒性。
- 自适应噪声调节:根据环境动态调整过程噪声协方差矩阵
Q
和观测噪声R
。 - 实时性优化:通过并行计算或嵌入式部署,满足实时定位需求。
代码结构示例
% 主要模块
1. 初始化参数与生成基站坐标
2. 模拟目标运动并计算RSSI观测值
3. CKF滤波迭代(时间更新 + 量测更新)
4. 结果可视化与误差分析
% 核心函数
- rssi_localization():RSSI定位解算
- position_3dim():三维最小二乘估计
- CKF滤波循环:容积点生成、非线性映射、协方差更新
参考文献与改进建议
- 理论依据:CKF算法源于Arasaratnam的球面径向容积准则,在导航领域已验证其优于EKF/UKF的稳定性。
- 改进计算速度的方法:
- 增加抗差自适应机制,抑制异常观测值影响。
- 采用滑动窗口滤波,优化计算效率以支持实时应用。
运行结果
- 定位示意图:
- 三轴误差图:
命令行窗口的输出截图:
MATLAB源代码
部分代码:
% 基于RSSI原理的Wi-Fi定位程序,N个锚点(数量可自适应)、三维空间,轨迹使用CKF进行滤波
% 2025-04-26/Ver1
clear; clc; close all; % 清除工作区、命令窗口和关闭所有图形窗口
rng(0); %固定随机数种子
RSSI_err = 0.1; % 定义RSSI测量误差
n = 10; %定义蓝牙基站的数量
% 使用正弦和余弦函数生成各个蓝牙基站的坐标(并添加微小随机偏移)
baseP = 10*[sin(1:n)+0.01*[1:n]+1;cos(4*(1:n))+0.01*[1:n]+1;cos(2*(1:n))+0.01*[1:n]+1]';
% 定义信号强度与距离的关系
% 假设信号强度衰减模型为: RSSI(d) = RSSI_0 - 10*n*log10(d)
RSSI_0 = -30; % 在1米处的信号强度
nn = 5; % 衰减因子
% 模拟未知点的位置
% true_position = [10,10,20]; % 待定位点真实坐标
% 生成目标点坐标
position0 = [10,10,15];
% 生成目标的运动
positions = repmat(position0,21,1)+[0:0.2:4;0:-0.2:-4;zeros(1,21)]';
for i1 = 1:size(positions,1)
true_position = positions(i1,:);
distances(:,i1) = sqrt(sum((baseP - true_position).^2, 2)); % 计算距离
RSSI_measurements(:,i1) = RSSI_0 - 10*nn*log10(distances(:,i1)) + RSSI_err*randn(size(distances(:,i1))); % 添加噪声
% 定位函数
estimated_position(i1,:) = rssi_localization(RSSI_measurements(:,i1), baseP, RSSI_0, nn);
end
estimated_position_wifi = estimated_position';
%% 滤波模型初始化
t = 1:1:size(positions,1);% 定义时间序列
Q = 0.01*diag([1,1,1]);% 设置过程噪声协方差矩阵
w = sqrt(Q)*randn(size(Q,1),length(t)); %生成
% 观测噪声协方差矩阵和观测噪声
R = 0.1*diag([1,1,1]);
% v = sqrt(R)*randn(size(R,1),length(t));
完整代码下载链接:https://download.csdn.net/download/callmeup/90724092
如需帮助,或有导航、定位滤波相关的代码定制需求,请点击下方卡片联系作者