洛谷P1772[ZJOI2006]物流运输

题目
最短路+DP

最短路可以用floyd或者spfa来处理出1到n的所有时间区间的最短路。

\(dis[i][j][k][l]\)表示i到j在\(k,l\)时间内每个时间点都能走的节点的\(i,j\)之间的最短路。

因此我们可以预处理出来最短路,然后开始DP,设置\(dp[i]\)为1到i之间的所有时间的最短路之和。然后就可以区间DP了。

#include <bits/stdc++.h>
using namespace std;    
int t, n, m, k, d, flag[23], dis[23][23][110][110], check_tim[110][110];//check[p][m]表示p点在m的时间是否是对的。 
int dp[201];            
inline void floyd()
{   
    for (int ts = 1; ts <= t; ts++)
        for (int te = 1; te <= t; te++)//从ts(每段时间的开始 
        {
            for (int i = 1; i <= n; i++)
                for (int j = 1; j <= n; j++)
                    dis[i][j][ts][te] = dis[i][j][0][0];
            memset(flag, 0, sizeof(flag));
            flag[n] = 1;
            for (int tim = ts; tim <= te; tim++)
                for (int i = 1; i <= n; i++)
                    if (check_tim[i][tim])  
                        flag[i] = 1;
            for (int k = 1; k <= n; k++)
                if (!flag[k])
                    for (int i = 1; i <= n; i++)
                        for (int j = 1; j <= n; j++)
                            dis[i][j][ts][te] = min(dis[i][j][ts][te], dis[i][k][ts][te] + dis[k][j][ts][te]);
        }
    for (int i = 1; i <= t; i++)
        dp[i] = dis[1][n][1][i] * i;
}   
inline void init()
{
    scanf("%d%d%d%d", &t, &n, &k, &m);
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
        {
            dis[i][j][0][0] = 1000007;
            if (j == i) dis[i][i][0][0] = 0;
        }
    for (int i = 1, a, b, c; i <= m; i++)
        scanf("%d%d%d", &a, &b, &c), dis[a][b][0][0] = dis[b][a][0][0] = min(dis[a][b][0][0], c);
    scanf("%d", &d);
    for (int i = 1; i <= d; i++)
    {
        int p, l, r;
        scanf("%d%d%d", &p, &l, &r);
        for (int j = l; j <= r; j++)
            check_tim[p][j] = 1;
    }
    floyd();
}
int main()
{
    init();
    for (int i = 1; i <= t; i++)
        for (int j = 1; j <= i; j++)
            dp[i] = min(dp[i], dp[j - 1] + dis[1][n][j][i] * (i - j + 1)+ k);//j时间之前的值+k+   
    printf("%d", dp[t]);
    return 0;
}

转载于:https://www.cnblogs.com/liuwenyao/p/11028908.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值