numpy和pandas的基础索引切片

Numpy的索引切片

索引

In [72]: arr = np.array([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]])                 

In [73]: arr                                                                   
Out[73]: 
array([[[1, 1, 1],
        [2, 2, 2]],

       [[3, 3, 3],
        [4, 4, 4]]])

In [74]: arr.ndim                                                              
Out[74]: 3

In [75]: arr.shape                                                             
Out[75]: (2, 2, 3)

In [76]: arr[0]           #返回降低一个维度的数组                                                 
Out[76]: 
array([[1, 1, 1],
       [2, 2, 2]])

  In [77]: arr[0,0]         #返回一维数组
  Out[77]: array([1, 1, 1])

切片

In [78]: arr[:,:,:2]                                                           
Out[78]: 
array([[[1, 1],
        [2, 2]],

       [[3, 3],
        [4, 4]]])

索引与切片结合

array([[[1, 1, 1],
        [2, 2, 2]],
       [[3, 3, 3],
        [4, 4, 4]]])
In [79]: arr[0,1,:2]                                                           
Out[79]: array([2, 2])
 

Pandas的索引切片

 一、Series的索引

In [8]: obj = pd.Series(np.arange(4),index=['a','b','c','d'])                  

In [9]: obj                                                                    
Out[9]: 
a    0
b    1
c    2
d    3
dtype: int64

1)使用index进行索引

In [10]: obj['b']                                                              
Out[10]: 1

In [11]: obj[1]                                                                
Out[11]: 1

2)切片

In [12]: obj['b':'d']    #包含尾部                                                      
Out[12]: 
b    1
c    2
d    3
dtype: int64

In [13]: obj[1:3]                                                              
Out[13]: 
b    1
c    2
dtype: int64

3)使用索引列表进行索引

In [14]: obj[['b','d']]                                                        
Out[14]: 
b    1
d    3
dtype: int64

In [15]: obj[[1,3]]                                                            
Out[15]: 
b    1
d    3
dtype: int64

 二、DataFrame的索引

In [20]: obj = pd.DataFrame(np.arange(16).reshape((4,4)),index=['a','b','c','d'
    ...: ],columns=['a1','b2','c3','d4'])    
In [
21]: obj Out[21]: a1 b2 c3 d4 a 0 1 2 3 b 4 5 6 7 c 8 9 10 11 d 12 13 14 15

1)索引列

不可以obj[‘a’]了

In [32]: obj['b2']                                                             
Out[32]: 
a     1
b     5
c     9
d    13
Name: b2, dtype: int64

2)行切片

In [36]: obj[:3]                                                               
Out[36]: 
   a1  b2  c3  d4
a   0   1   2   3
b   4   5   6   7
c   8   9  10  11

In [37]: obj[obj['c3']>6]  #根据布尔值数组选择数据                                                    
Out[37]: 
   a1  b2  c3  d4
c   8   9  10  11
d  12  13  14  15

3)索引列和行

In [38]: obj['a1']['c']                                                        
Out[38]: 8

In [39]: obj['a1'][:2]                                                         
Out[39]: 
a    0
b    4
Name: a1, dtype: int64

4)使用loc和iloc选择数据

使用轴标签(loc)或整数标签(iloc)从DataFrame中选出数组的行和列的子集

整数标签(iloc):

In [55]: obj                                                                   
Out[55]: 
   a1  b2  c3  d4
a   0   1   2   3
b   4   5   6   7
c   8   9  10  11
d  12  13  14  15

In [53]: obj.iloc[2,[2,0,1]]  #变换列顺序                                                 
Out[53]: 
c3    10
a1     8
b2     9
Name: c, dtype: int64

In [54]: obj.iloc[2]         #索引行                                                  
Out[54]: 
a1     8
b2     9
c3    10
d4    11
Name: c, dtype: int64

轴标签(loc):

In [57]: obj.loc['a',['b2','a1']]                                              
Out[57]: 
b2    1
a1    0
Name: a, dtype: int64

In [58]: obj.loc['a':'c',['b2','a1']]                                          

Out[58]: 
   b2  a1
a   1   0
b   5   4
c   9   8

 

转载于:https://www.cnblogs.com/tongtong123/p/10620206.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值