自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(115)
  • 收藏
  • 关注

原创 Read timed out. (python 安装第三方库超时)

python安装第三方包超时报错解决方法

2024-05-07 12:21:56 190

原创 css选择器

css选择器总结

2024-05-05 22:04:53 703

原创 停更这大半年-我去考了个研

停更说明

2024-04-21 15:37:49 274

原创 flask 报错 attributeerror: model

注意models.py下模型继承对象名字不要写错。db.Model 而不是db.model。今天犯了超级低级错误。

2024-04-15 15:37:11 88

原创 PackagesNotFoundError:The following packages are not available from current channels: flask--migrate

安装第三方库flask-migrate遇见的问题

2024-04-12 21:29:13 173

原创 NLP基础模型和注意力机制

吴恩达深度学习c5,第三周

2023-06-05 09:13:30 881

原创 typedef 和结构体一起使用的情况

typedef 和结构体一起使用的情况c语言可以使用下面几种方法定义结构变量。

2023-03-14 22:35:19 682 1

原创 深度学习-吴恩达(C5)训练词向量

NLP中训练词向量

2023-01-26 20:20:36 887

原创 吴恩达(Andrew Ng)深度学习课程笔记目录

吴恩达深度学习笔记目录

2022-12-26 20:55:01 1010 2

原创 深度学习-吴恩达(C3)结构化你的机器学习工程

结构化你的机器学习工程改变了深度学习的错误比如你分割数据的方法,分割成train,development(dev)或叫valid,test,所以最好的实践方法是什么?了解更多端对端的深度学习,进而了解到你是否需要使用它,这节课将分享了解到的所有热门领域的建立并改良很多深度学习问题

2022-12-26 20:02:42 1094 1

原创 mathtype显示Tex translation failed

word使用mathtype中遇到的公式无法识别问题

2022-12-13 21:52:13 2136

原创 神经网络优化

提升深度神经网络:超参数调节,正则化,优化

2022-12-12 23:06:55 1689

原创 卷积网络二:几个典型的卷积神经网络

介绍了几个典型的卷积神经网络,如残差网络,Inception网络

2022-12-06 22:59:56 642

原创 卷积神经网络三:目标检测和yolo算法

目标检测和yolo原理

2022-12-06 22:09:52 1067

原创 卷积神经网络四:人脸识别和风格变迁

本节主要介绍了人脸识别和像素风格变迁

2022-12-06 21:30:51 393

原创 pytorch和torchvision的GPU版本安装

pytorch的GPU版本安装

2022-10-28 12:56:30 1578

原创 windows你没有权限打开该文件,请向文件的所有者或管理员申请权限。

windows文件权限解除

2022-10-05 17:34:59 8297

原创 RNN循环神经网络

循环神经网络介绍入门

2022-09-22 19:09:50 1107 1

原创 pandas.errors.ParserError: Error tokenizing data. C error: Expected 2 fields in line 113, saw 3

pandas读取csv文件问题

2022-09-09 16:53:17 4538

原创 电脑开机后内存占用过高(50%以上)

电脑开机内存占用过高问题

2022-07-24 17:44:18 7998

原创 将安全信息应用到以下对象时发生错误:C:\Users\lenovo\Application Data无法枚举容器中的对象。访问被拒绝。

右键属性>>安全>>高级更改高级然后确定>>确定>>应用然后回到应用。这样就能进入Application Data文件夹了

2022-05-29 18:36:38 16134 1

原创 神经网络与深度学习四:建立多层的深层神经网络

吴恩达课程笔记

2022-05-18 20:35:00 1188

原创 python赋值浅拷贝深拷贝的不同

python赋值,浅拷贝,深拷贝的区别

2022-05-14 17:38:00 361

原创 css基础一

css层叠样式表 选择器是用于指定 CSS 样式的 HTML 标签,花括号内是对该对象设置的具体样式 属性和属性值以“键值对”的形式出现 属性是对指定的对象设置的样式属性,例如字体大小、文本颜色等 属性和属性值之间用英文“:”分开 多个“键值对”之间用英文“;”进行区分**所有的样式,都包含在 <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8">

2022-05-04 09:27:26 264

原创 python使用ARIMA进行时间序列的预测(基础教程)

时间序列就是以时间为索引的数据,比如下面这种形式python使用ARIMA建模,主要是使用statsmodels库首先是建模流程,如果不是太明白不用担心,下面会详细的介绍这些过程

2022-04-27 22:20:38 55270 54

原创 神经网络与深度学习三:编写单隐层神经网络

三:编写单隐层神经网络1 神经网络概述这篇文章你会学到如何实现一个神经网络,在我们深入学习技术细节之前,现在先大概快速的了解一下如何实现神经网络,如果你对某些内容不甚理解(后面的文章中会深入其中的细节)上周我们讨论了logistic回归,一起了解了这个模型和下面这个流程图的联系这里面你需要输入特征x,参数w和b,用那些计算z,然后用z计算出 a,我们用a表示y^\hat{y}y^​,接下来你就可以计算损失函数L,神经网络就是这个样子。之前提到过你可以把很多sigmoid单元堆叠起来构成一个神经

2022-04-26 21:17:58 2882

原创 2021年MathorCup高校数学建模挑战赛——大数据竞赛赛道A -思路分享

分享mothercup2021大数据挑战赛的思路

2022-04-15 15:34:25 6332 6

原创 神经网络与深度学习二:神经网络的基础编程

1 二分分类当你要构建一个神经网络,有些技巧是相当重要的,例如m个样本的训练集,你可能习惯性地使用一个for循环来遍历这m个样本,但事实上,实现一个神经网络如果你要遍历整个训练集并不需要直接使用for循环。还有就是神经网络的计算过程中通常有一个正向过程或者叫正向传播步骤,接着会有一个反向步骤,也叫反向传播步骤,下面会介绍为什么神经网络的计算过程可以分为前向传播和反向传播两个分开的过程,接下来会用logistic回归来阐述以便于更好的理解logistic回归是一个用于二分分类的算法,下面看一个例子计算

2022-04-13 21:41:16 1353 1

原创 CART树的理论基础和代码实战

1 理论推导学过ID3和C4.5的都知道,这些是基于熵选择划分特征的前后顺序,熵的计算公式如下H(p)=−∑i=1npilog2piH(p)=-\displaystyle\sum_{i=1}^n p_ilog_2 p_iH(p)=−i=1∑n​pi​log2​pi​其实基尼指数是这个熵的泰勒展开近似−plogp=−plog[1−(1−p)]≈−p[−(1−p)]=p(1−p)-plogp=-plog[1-(1-p)]≈-p[-(1-p)]=p(1-p)−plogp=−plog[1−(1−p)

2022-04-05 21:56:05 1539

原创 神经网络与深度学习一 :介绍深度学习

也许你们已经知道了深度学习改变了传统互联网业务,例如网络搜索和广告,但深度学习也同时使得许多新产品和企业以很多方式帮助人们,深度学习做的非常好的一个方面就是读取X光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及一些其他方面1 什么是神经网络从一个房价预测的例子开始,假设有六间房屋的数据集,已知房屋的面积,价格。想要找到一个函数根据房屋的面积预测房屋的价格你可能会想到用一条直线拟合这些样本但是价格不会有负值,所以直线不太适合,它最后会让价格为负,我们让它弯曲一点,结束于0图中的蓝线

2022-04-04 19:46:18 2080

原创 数据结构-指针和结构体

1 指针首先看变量在内存中的存储有时候需要获取并使用程序运行中某个变量的内存地址,如何获取这个地址、如何存储这个地址?&取地址符,&a就是获得了a的地址可以存储地址的变量称为指针变量。指针看起来就是地址,但不仅仅是地址信息,还包含类型信息2 指针变量的声明和初始化声明指针变量int *pn; //pn 是整型指针,指向整型变量指针变量名是pn,不是*pn   * 是指针声明符float *pa; //pa 是浮点型指针,指向浮点型变量ch

2022-04-03 12:36:03 5328 1

原创 statsmodels.tsa.arima_model.ARMA and statsmodels.tsa.arima_model.ARIMA have been removed in favor of

这种使用方法已经弃用了,改成下面即可import statsmodels.api as smmodel = sm.tsa.arima.ARIMA(train_data, order=(1,1,1))result = model.fit()

2022-03-27 16:38:03 11814 18

原创 机器学习建模流程

机器学习实战机器学习三把斧1.数据清洗1.1缺失值的处理某一列的特征缺失值达到40%左右,删除这个特征值;或者某一个样本的缺失值过大,那么删除这个样本。而当某个特征的缺失值较少的时候,不能删除这个特征。建模预测:把缺失值当做模型的预测值,用预测的值填充缺失值多重插补:前向填充,后项填充高维映射:就是把缺失值作为一个新的类,只对分类的变量比较好,在广告CTR(点击率)1.2异常值的处理异常:真实的异常,记录的异常。真实的异常:本来就是这个值,只是和其他样本偏移较大记录的异常:本

2022-03-25 19:51:02 7485

原创 pytorch实战

pytorch实战anaconda历史版本1 pytorch安装1换源教程找到C:\Users\用户名下的这个文件.condarc文件,更换一下内容ssl_verify: trueshow_channel_urls: true channels: - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64/ - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/ma

2022-03-25 12:51:42 4648

原创 向量的1范数,2范数,无穷范数,KNN中的Lp距离

L-0范数:用来统计向量中非零元素的个数。L-1范数:向量中所有元素的绝对值之和。L-2范数:欧式距离。L-∞范数:计算向量中的最大值。你也可以这样理解1-范数:║x║1=│x1│+│x2│+…+│xn│║x║_1=│x^1│+│x^2│+…+│x^n│║x║1​=│x1│+│x2│+…+│xn│2-范数:║x║2=(│x1│2+│x2│2+…+│xn│2)2║x║_2=\sqrt[2]{(│x^1│^2+│x^2│^2+…+│x^n│^2)}║x║2​=2(│x1│2+│x2│2+…+│x

2022-03-22 18:53:58 3802

原创 matplotlib图片对象和子图的使用

notebook默认输出的图片是静态的,无法进行放大等操作%matplotlib inline:这是默认的模式,输出的图片是静态的%matplotlib notebook:在这个模式下会在notebook中产生一个绘图窗口,能够对图片进行放大缩小等操作。%matplotlib auto 和 %matplotlib 与%matplotlib notebook 一样一般情况下是不设置的,使用默认的静态。设置成notebook绘制多个图像会有麻烦,每次绘制完都要新建画布,不然会重叠,比如下面impor

2022-03-21 21:24:12 815

原创 np.pad函数在卷积神经网络的使用方法

np.pad主要就是三个参数array 需要填充的数组pad_width 是填充的形状mode 填充的方法举个例子就清楚了arr1=np.array([1,1,1])np.pad(arr1,(3,4),'constant') #constant的缺省值为0 前面填充3位,后面填充4位。mode还有一些其他的模式‘edge’:用数组的边缘值填充。‘maximum’ ‘mean’ ‘median’ ‘minimum’ 最大值,均值,中位数,最小值用的不多,这里

2022-03-21 16:52:29 4936 1

原创 卷积神经网络

卷积神经网络1 介绍1 图像分类给一张照片,识别图中物品的类别2 目标检测一张图中有多个物体,不仅要识别出是什么,还要识别出它们所在的位置3 图像风格的变迁计算机视觉,神经网络处理图像时参数会非常的多1000*1000的图形如果有第一个隐藏层有1000个神经元,如果是全连接的情况下就会有的数据量,W1=1000∗3mW_1=1000*3mW1​=1000∗3m也就是30亿个参数,如此多的参数有可能会过拟合,而且巨大的内存需求让人无法接受。因此需要进行卷积操作2 卷积运算首

2022-03-20 15:22:21 5048 1

原创 leastsq函数的使用

leastsq作用:最小化一组方程的平方和。参数设置:func 误差函数x0 初始化的参数args 其他的额外参数举个例子就清楚了首先创建样本点import numpy as npimport scipy as spfrom scipy.optimize import leastsqimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_

2022-03-15 16:03:08 2437

原创 python报错ValueError: supplied range of [-inf, 5.572154032177765] is not finite

数据分布不均匀时,采用log变换处理数据,plt.hist(np.log(df_train['cycle'].values), orientation = 'vertical',histtype = 'bar', color ='skyblue') plt.show()"""ValueError: supplied range of [-inf, 5.572154032177765] is not finite"""这是因为你的数据中有0,经过log变化就是-inf(负无穷)data=np.

2022-03-11 16:49:26 3712

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除