背景简介
随着人工智能技术的快速发展,越来越多的企业开始尝试将AI决策工具应用于业务流程中。然而,AI技术的引入并非没有风险。本篇文章将基于《Managing AI Decision-Making Tools》一书中的相关章节内容,探讨如何管理AI决策工具,以及如何在失败不可避免的情况下,有效地与AI协作,共同提升业务绩效。
AI决策工具的挑战与人机协作模式
在促销活动中,一家公司运用机器学习算法成功预测了促销效果,但随后遇到了极端失败,导致销售损失。通过对失败案例的回顾,数据科学家们发现机器学习算法在预测特定类型的促销活动时存在困难。他们没有放弃项目,而是开发出了一种人机协作的方法。关键在于将机器对其预测的信心水平进行编码,并在机器信心低时,由人类介入进行异常情况下的预测审查。这种模式被称作Human on the loop(HOTL),即人在回路中。
人机协作模式的应用
人机协作模式在实践中获得了积极的成效。例如,欧洲的一家食品配送业务,通过机器学习优化了自行车快递员的配送时隙规划。通过设定控制参数,管理者可以对风险、成本和服务做出权衡,实现更优的管理决策。这种方法的关键在于,通过动态地调整系统规则,保持工作的趣味性。
人类在AI决策中的角色
在AI的三种协作模式中,人类的角色被定义为不同的级别。在HOTL模式中,人类直接介入决策过程,通过设定新约束和目标来指导机器的行动。而在Human out of the loop(HOOTL)模式中,人类则仅作为机器的监控者,机器独立做出决策,人类仅在必要时介入。第三种模式是将人类和机器视为完全独立的实体,人类仅负责设置目标,机器自动执行。
如何选择合适的协作模式
选择合适的AI协作模式至关重要。这不仅涉及到技术层面,还涉及到组织的文化和管理者的信心。管理者需要评估人类管理的可能水平和期望水平,以及对于风险和迭代的接受度。没有一种固定的答案,但确保人类管理者对AI的输出负责是至关重要的。
AI决策失败的不可避免性与应对策略
AI技术的失败并非总是系统本身的过错,很多时候,失败来自于系统设计要展示的智能产生的错误。AI在学习阶段和执行阶段都可能犯错。因此,提前制定出应对失败的计划是必不可少的。企业应当分析产品或服务的潜在故障点,并准备相应的损害缓解措施。
AI失败案例的启示
通过回顾一些著名的AI失败案例,我们可以发现AI设计用来完成特定任务时,最终可能会在某些方面失败。例如,AI医生可能会误诊病人,视频描述软件可能无法正确理解电影情节等。这些案例给我们一个重要的启示:失败是不可避免的,但我们可以采取一些最佳实践来减少失败的影响。
总结与启发
通过对AI决策工具管理的深入探讨,我们可以看到人类与机器协作的重要性。企业应根据自身的业务特点和管理需求,选择合适的人机协作模式,并制定应对失败的计划。AI决策的失败在所难免,但我们可以通过最佳实践来应对和减轻失败带来的影响,从而在保证业务流程顺畅的同时,最大限度地发挥AI的潜力。
在AI技术不断发展与完善的未来,企业需要不断更新和优化其AI决策工具的管理策略,以适应快速变化的市场和技术环境。同时,企业领导者和决策者需要更加深入地了解AI技术,以确保在引入AI的同时,能够有效管理AI带来的风险和挑战。