python二元多次函数拟合_对python实现二维函数高次拟合的示例详解

本文介绍了在数据挖掘比赛中使用Python进行二维函数高次拟合的过程,包括数据导入、RMSE和R2指标计算,并展示了1到6次拟合的效果。通过Pipeline和PolynomialFeatures结合岭回归实现,对不同次数的拟合结果进行了比较。
摘要由CSDN通过智能技术生成

在参加“数据挖掘”比赛中遇到了关于函数高次拟合的问题,然后就整理了一下源码,以便后期的学习与改进。

在本次“数据挖掘”比赛中感觉收获最大的还是对于神经网络的认识,在接近一周的时间里,研究了进40种神经网络模型,虽然在持续一周的挖掘比赛把自己折磨的惨不忍睹,但是收获颇丰。现在想想也挺欣慰自己在这段时间里接受新知识的能力。关于神经网络方面的理解会在后续博文中补充(刚提交完论文,还没来得及整理),先分享一下高次拟合方面的知识。

# coding=utf-8

import matplotlib.pyplot as plt

import numpy as np

import scipy as sp

import csv

from scipy.stats import norm

from sklearn.pipeline import Pipeline

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

from sklearn import linear_model

''''' 数据导入 '''

def loadDataSet(fileName):

dataMat = []

labelMat = []

csvfile = file(fileName, 'rb')

reader = csv.reader(csvfile)

b = 0

for line in reader:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值