三维反对称矩阵_[高代习题课拓展] 反对称阵的Pfaffian

参考文献:

  1. 谢启宏高等代数官方博客 行列式的组合定义及其应用--反对称阵的Pfaffian - torsor - 博客园
  2. 普罗斯库烈柯夫, 线性代数习题集.
  3. S. Winitzki, Linear Algebra via Exterior Products.

整理了一下我看到的两种证明:组合方法和外积方法。组合方法参考了[2]的问题541-545,只不过我把他所写的那些角标统统换成了以

中的元素作为角标,然后我又引入了
等记号,总之,我更倾向于在置换群中叙述。外积方法参考了[3]的5.8节。

897b8a93f71fa215e371465983ed5e0e.png
第1页

e11c425a9f1cf7d5a21e2288977a178b.png
第2页

73c1003b06630a32944e85e566a24e44.png
第3页

d8b921bf3c6e5ddc9f5f1222251202d3.png
第4页

f0bdd433c7969e2ee18a4385cb74aa7b.png
第5页

cd5df0df8014883b2216d79ab01d3491.png
第6页

bfeb7e0c7f27714d9b69634003c9524c.png
第7页

36d38c9f6c4a94a5a931232e761edc69.png
第8页

后记:

我是在Mumford, Abelian Varieties, 154页注记看到Pfaffian这个概念的,以前真的没有听说过,那个4阶的情形倒是计算过,但从不知道背后还藏着个概念。我实在太孤陋寡闻了!

第三节中的几个推论:首先是辛矩阵的行列式均为1,而不会是-1,这个我一直不知道具体的证法。我知道它可解释为“辛矩阵保持体积形式不变”,但这只适合

或者说特征0的域,一般的交换环怎么办呢?现在好了,有了
这个结果,上述问题都不存在了。所以作为
上的代数群,也可将
视作
的闭子群。

另一点,整系数的偶数阶(非退化)反对称阵

的行列式总是完全平方数,这个我之前在知乎写过,就是说:存在
使得
,其中
,且
。当然了,把整数环换成任意PID都是类似的,这本质上就是初等因子的理论。不过现在再从外积角度来看,这似乎只是一个“张量化简”的问题。将反对称的
写成二阶反变张量
,在整数环上不能像在域中那样将系数全变成1,但是可以实现
,其中
,而
的基。这样叙述就清楚多了。特别地,在Euclidean整环上可以写出一套化简的算法,它应该是和Euclidean整环上矩阵的相抵化简的算法十分类似的。

以前顶多知道矩阵可以当做2阶张量,却没有进一步想到反对称矩阵就是2阶反对称张量。思维真是闭塞啊!以及,要是这些东西本科讲了就好了……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值