matlab解优化问题,常见优化问题Matlab求解.ppt

常见优化问题MATLAB求解 徐风敏 fengminxu@mail.xjtu.edu.cn 一。常见的优化问题的分类及算法求解; 二。Matlab优化工具箱常用函数的介绍; 三。以往优化建模的实例。 最优化问题的分类 MATLAB优化工具箱能求解的优化模型 主要讲解的优化模型 1。无约束最优化; 2.。线性规划与半定规划; 3.。整数规划; 4。组合规划; 5 。非线性规划; 1。 无约束最优化 问题: min f (x) f : R n→R 在迭代点 x(k) 取方向 d(k)= -▽f(x(k) ) 精确一维搜索 由于梯度方向是函数值变化最快的方向        -----最 速 下降法 最速下降法流程图 最速下降法的性质 特点:全局收敛,线性收敛,易产生扭摆现象     而造成早停。 (当x(k)距最优点较远时,速度快,而接近最优点时,速度下降) 原因:f(x)=f(x(k))+▽Tf(x(k))(x-x(k)) + o||x-x(k)|| 当 x(k)接近 l.opt.时 ▽f(x(k) ) →0,于是高阶项 o||x-x(k)||的影响可能超过▽Tf(x(k))(x-x(k)) 。 Newton法及其修正 1. Newton法: 设f(x)二阶可微,取f(x)在x(k)点附近的二阶Taylor近似函数: qk(x)=f(x(k))+ ▽Tf(x(k))(x-x(k)) +1/2 (x- x(k))T▽2f(x(k)) (x-x(k)) 求驻点: ▽ qk(x)= ▽f(x(k))+ ▽2f(x(k)) (x-x(k))=0 当▽2f(x(k)) 正定时,有极小点: x(k+1)=x(k)-[▽2f(x(k)) ]-1 ▽f(x(k))           ——Newton迭代公式 实用中常用 ▽2f(x(k)) S= -▽f(x(k)) 解得s(k) x(k+1)=x(k)+s(k) 特点:二阶收敛,局部收敛。 (当x(k)充分接近x*时,局部函数可用正定二次函数很好地近似,故收敛很快)。 二次终结性:当f(x)为正定二次函数时,从任意初始点可一步迭代达到最优解。 主要缺点: (1)局部收敛 (2)用到二阶Hesse阵,且要求正定 (3)需计算Hesse阵逆或解n阶线性方程 组,计算量大 Newton法的改进: (1)为减小工作量,取m(正整数),使每m次迭代使用同一个Hesse阵; (2)带线性搜索的Newton法: 特点:可改善局部收敛性,当d(k)为函数上升方向时,可向负 方向 搜索,但可能出现± d(k)均非下降方向的情况。 (3)Goldstein-Price方法(G-P法): 取 d(k)= -[▽2f(x(k)) ]-1 ▽f(x(k)) , ▽2f(x(k)) 正定 - ▽f(x(k)) ,否则 特点: 在一定条件下, G-P法全局收敛。 但当▽2f(x(k)) 非正定情况较多时,收敛速度降为接近线性。 (4)Levenberg-Marguardt法(L-M法): 主要思想:用[▽2f(x(k)) +μ I ] 取代▽2f(x(k)) 进行迭代,其中I 为单位矩阵。 μ>0 使 [▽2f(x(k)) +μ I] 正定, μ尽量小。 特点:全局二阶收敛。 其他方法 3. 变尺度法的主要特点:  ⑴只需用到函数的一阶梯度;(Newton法用到二阶Hesse阵)  ⑵下降算法,故全局收敛; ⑶不需求矩阵逆;(计算量小) ⑷一般可达到超线性收敛;(速度快) ⑸有二次终结性。 四:直接方法:模式搜索法: Hooke & Jeeves 1961; Matlab工具箱关于无约束优化的求解程序 Fminunc and Fminsearch 调用格式一样,全是求解无约束最优化; 求解方法是单纯型算法。 X=fminunc(Fun,x0); [x,f,flag,out]=fminunc(Fun,x0,opt,p1,p2….) 注:1。 fminunc的效率明显高于f

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值