matlab中共轭梯度法求二元二次函数最小值_工程优化设计与Matlab实现——无约束问题的直接解法(三)...

本文介绍了在Matlab中如何使用共轭方向法求解无约束优化问题,特别是对于二元二次函数的最小值。文章详细阐述了共轭方向与函数极值的关系、共轭方向的构成及其特点,并通过实例展示了共轭方向法的运用。此外,还探讨了鲍威尔法作为共轭方向法的改进,以避免线性相关导致的搜索失败问题,并给出了鲍威尔法的实现和应用案例。
摘要由CSDN通过智能技术生成

在无约束问题的导数解法中,我们借助梯度方向构造了“两头牛的轭”,我们称其为共轭梯度法。(详情见工程优化设计与Matlab实现——无约束问题的导数解法(四))

在这里,我们不再依赖梯度方向,而从其他角度来入手,构造共轭方向。

共轭方向法

Point 1 共轭方向与函数极值的关系

由于目标函数可以使用在任一点

二次泰勒展开式
来近似,

从而转换为求

这一n元二次函数极值点的问题。

所以我们可以先以二元二次函数为例进行说明:

对于具有正定矩阵

的二元二次函数

有两个性质:

一个是:其等值线为同心椭圆族,中心为极值点;

另一个是:过椭圆族中心的直线与椭圆交点处诸切线相互平行

根据这两个性质有如下推论:按任意搜索方向

,作同心椭圆族的两平行切线,则连接两个切点的直线通过椭圆族中心

所以,如果由

沿
再沿
作一维优化,即可得到极小值点

f339832fc08f9ea6a8eb01bbd8610d9a.png

推广到n元二次函数

对于具有

正定矩阵
的n元二次函数

其性质如下:

是关于
个非零共轭矢量,若从某一个初始点
出发沿任一
)方向进行一维优化搜索,得到等值线的切点,即最优点
;再从另一初始点
沿同一
进行一维搜索得到另一最优点
,则矢量
与矢量组
中的每一向量,关于
共轭。

如果n元二次函数有n个共轭方向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值