本文所述算法即假设要用很多个教室对一组活动进行调度。我们希望使用尽可能少的教室来调度所有活动。采用C++的贪心算法,来确定哪一个活动使用哪一间教室。
对于这个问题也常被称为区间图着色问题,即相容的活动着同色,不相容的着不同颜色,使得所用颜色数最少。
具体实现代码如下:
//贪心算法
#include "stdafx.h"
#include
#define N 100
using namespace std;
struct Activity
{
int number; //活动编号
int begin; //活动开始时间
int end; //活动结束时间
bool flag;//此活动是否被选择
int roomNum; //此活动在哪间教室举行
};
//对于活动集,按照结束时间递增排序,使用快速排序
void fast_sort(Activity *act,int f,int t)
{
if(f
{
int i = f-1,j = f;
Activity a = act[t];
while(j
{
if(act[j].end<=a.end)
{
i++;
Activity temp1 = act[i];
act[i] = act[j];
act[j] = temp1;
}
j++;
}
Activity temp2 = act[t];
act[t] = act[i+1];
act[i+1] = temp2;
fast_sort(act,f,i);
fast_sort(act,i+2,t);
}
}
//把每一个相容的活动集添加到一个教室,使得教室数目最少
int select_room(Activity *act,int *time,int n)
{
int i = 1;
int j = 1;
int sumRoom;
//目前所用的教室数目
sumRoom = 1;
int sumAct;
//目前有多少活动被选择了
sumAct = 1;
//教室1目前最晚时间为排在最前面的活动的结束时间
time[1] = act[0].end;
//最先结束的活动放在教室1中
act[0].roomNum = 1;
for(i=1;i
{
for(j=1;j<=sumRoom;j++)
{
//如果活动act[i]的开始时间大于等于j教室目前的最晚结束时间且此活动还没有被选择,
//则此活动与目前这间教室里面的活动是兼容的,可以加入进去
if((act[i].begin>=time[j])&&(!act[i].flag))
{
//此活动的教室号码
act[i].roomNum = j;
//此活动被选择
act[i].flag = true;
//更新此教室的最晚时间
time[j] = act[i].end;
//被选择的活动数目加1
sumAct ++;
}
}
//说明活动没有全部被选择,而所有活动都遍历一遍
//所以需要再加一个教室,从头再遍历
if(sumAct
{
//从头开始遍历
i = 0;
//教室数目加1
sumRoom = sumRoom+1;
}
}
return sumRoom;
}
int _tmain(int argc, _TCHAR* argv[])
{
int cases;
Activity act[N];
//用来记录每个教室目前最晚完成的活动的结束时间
int time[N];
cout<
cin>>cases;
while(cases--)
{
int n;
cout<
cin>>n;
int i;
for(i=0;i
{
time[i+1] = 0; //初始化每个教室目前最晚的时间为0
act[i].number = i+1;
act[i].flag = false; //初始化每个活动都未被选择
act[i].roomNum = 0; //初始化每个活动都占用教室
cout<
cin>>act[i].begin;
cout<
cin>>act[i].end;
}
fast_sort(act,0,n-1);
int roomNum =select_room(act,time,n);
cout<
cout<
for(i=0;i
{
cout<
}
}
system("pause");
return 0;
}