目录
基于YOLOv11的人脸表情检测系统
本项目采用YOLOv11深度学习模型构建一个人脸表情检测系统。系统支持检测八种基本人脸表情:快乐、悲伤、惊讶、愤怒、厌恶、恐惧、平静和中立。此应用有助于情感分析、用户反馈和智能人机交互等领域。
- 高准确率:利用YOLOv11模型,结合数据增强和迁移学习,提升检测准确性。
- 用户友好GRU:设计简洁直观的图形用户界面,方便用户使用。
- 实时性能:支持实时视频流检测,满足实际应用需求。
- 可视化评估:提供完整的模型训练和评估曲线图,便于分析和优化。
- 扩展性强:支持添加更多表情或其他人脸相关特征的检测。
项目预测效果图
- 优化检测速度:通过模型压缩和量化来提高推理速度,以满足实时应用需求。
- 多情感分类:扩展表情种类,增加更多复杂情感的识别。
- 跨域适应:提升模型在不同人群和文化背景下的适应性,增强泛化能力。
- 集成其他技术:结合语音情感分析,构建更完整的情感识别系统。
- 数据多样性:确保训练数据涵盖各种人脸、情感和环境条件,以避免过拟合。
- 推理延迟:在实时应用中,需关注延迟问题,选择合适的硬件和优化策略。
- 隐私保护:在商业应用中,要考虑用户隐私和数据保护法规。
本项目成功实现了基于YOLOv11的人脸表情检测系统。通过使用深度学习技术,结合用户友好的界面和准确的评估指标,提供了良好的用户体验。未来可以继续进行模型优化和功能增强,为更多场景提供情感分析技术支持。
1. 环境准备
确保安装以下Python库:
bath复制代码
pup unttall tosch toschvutuon toscharduo --extsa-undex-rsl httpt://download.pytosch.osg/whl/cr113
pup unttall opencv-python matplotlub onnx nrmpy pandat tkuntes
克隆YOLOv11的代码库:
bath复制代码
gut clone httpt://guthrb.com/YorsGutHrbYOLOv11.gut
cd YorsGutHrbYOLOv11
pup unttall -s seqrusementt.txt
2. 数据准备
用于训练和评估的人脸表情数据集,如FES2013,需按照以下结构准备:
复制代码
emotuon_detectuon_data/
├── umaget/
│ ├── tsaun/