毕业论文中计算机代码重复吗,知网查重程序代码算重复吗?

知网查重程序代码也是有源代码对比库的,因此程序代码也会被系统检测出来的。对于程序代码查重率过高的情况,我们需要通过别的方式来降低查重率,比如说通过截图。但为了保证论文字数与质量,建议大家多换个思路写代码。那么,知网查重程序代码算重复吗?

797535c1aa734c8da24813b4c266dfff.png

一、知网查重程序算重复

随着知网查重的愈来愈智能化,无论是英语、图标当中的文字还是带慕,其检测范都是在逐日增加的,因此,知网查重的范围也包括论文当中的程序代码,而且也统一适用知网查重的规则,即连续十三个以上字符重复则计算为涉嫌抄袭。论文当中的程序代码若出现重复,一般作者都会直接采用截图的方式对程序代码进行截图,而当前知网只能够检测Word或者PDF形式的文字部分,尚不能够检测图片部分。

d2a53738713ce68878a5ebc12754a93e.png

二、知网查重源代码库

正常情况下,在知网论文检测系统中代码是会被扫描的,也就是参与查重检测的,如果代码重复比较多,会被标红的,所以代码也不要抄袭。而在2019年10月末更新的最新知网查重系统中,更新新增了“源代码库”,支持选择该库作为对比资源库使用,并支持进行.cpp、.java、.py等源码检测。即检测范围多了一个源代码库,对软件工程等需要写代码的论文会有影响,其他专业不影响。预备码农们太难了!

4fbd5713a460b8c793a8134c352a526f.png

三、知网查重有程序代码查重率高

在最新版本的查重系统,对OCR智能识别技术也进行了重大升级,比如图片文字抓取、公式识别、文本框识别等内容,都有了很大的识别几率。如果一定要使用源代码的内容,建议大家加大程序实现的方式,或者适量添加代码注释,对内容进行稀释,也不妨为一种技巧。此外,将程序嵌入到流程图等工具内,被识别的概率也会降低。凡此种种类似的方法,其实都是规避被查重系统对文字的抓取概率,大家不妨从这个角度入手,多加尝试。

小结:知网查重程序代码算重复的,最新的知网检测系统中新增了源代码数据库,支持cpp、java、py等程序检测。如果出现查重率过高,大家可以尝试采用图片替换代码内容,也可以添加代码注释。以上是“知网查重程序代码算重复吗?”全部分享。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要编写一个论文程序,可以按照以下步骤进行: 1. 读取待检测的论文文件(例如txt、doc、pdf等)并将其转换为文本格式; 2. 对文本进行预处理,包括去除标点符号、停用词、数字等,只保留单词; 3. 将处理后的文本划分为多个句子或段落,以便进行比较; 4. 对每个句子或段落进行向量化,即将其转换为数值向量; 5. 使用相似度法(如余弦相似度、Jaccard相似度等)比较待检测的论文与已的文献库论文的相似度; 6. 根据相似度阈值进行判断,确定待检测论文是否存在抄袭行为。 下面是一个简单的Python代码示例,实现了基于余弦相似度的论文功能: ```python import os import re import string from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity # 读取文件 def read_file(filename): with open(filename, 'r', encoding='utf-8') as f: text = f.read() return text # 预处理文本 def preprocess_text(text): # 去除标点符号和数字 text = re.sub('[%s]' % re.escape(string.punctuation + string.digits), '', text) # 转换为小写 text = text.lower() return text # 向量化文本 def vectorize_text(text): # 使用CountVectorizer向量化文本 vectorizer = CountVectorizer(stop_words='english') vector = vectorizer.fit_transform([text]) return vector.toarray() # 计相似度 def compute_similarity(text1, text2): # 向量化文本 vector1 = vectorize_text(text1) vector2 = vectorize_text(text2) # 计余弦相似度 similarity = cosine_similarity(vector1, vector2)[0][0] return similarity # 主函数 if __name__ == '__main__': # 读取待检测的论文文件和已的文献库 paper_file = 'paper.txt' corpus_dir = 'corpus' papers = [os.path.join(corpus_dir, f) for f in os.listdir(corpus_dir)] # 读取文件内容并进行预处理 paper_text = preprocess_text(read_file(paper_file)) corpus_text = [preprocess_text(read_file(f)) for f in papers] # 计相似度并输出结果 for i, corpus in enumerate(corpus_text): similarity = compute_similarity(paper_text, corpus) print('Paper %d similarity: %.2f%%' % (i+1, similarity*100)) ``` 该代码使用了sklearn库的CountVectorizer和cosine_similarity函数,可以快速实现文本向量化和计余弦相似度的功能。需要注意的是,该代码只是一个简单的示例,实际应用还需要进行更多的优化和改进。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值