终于要开始做这个方向了,记录一下吧。
迁移学习常用的数据集
部分图截取自各个网站,同时感谢王晋东(知乎账号:王晋东不在家)博士的分享
(https://github.com/jindongwang/transferlearning/blob/master/ ,
数据集Office-31,Office+Caltech,VLSC都可以在该项目下找到)
一. Office-31
(Object recognition数据集)
包含了31类的数据,全部是Office的数据,数据来源为A(Amazon), W(Webcam) 和D(DSLR),BenchMark如下图所示:
二.Office+Caltech
(Object recognition数据集)
包含有2533个样本,包含(C A W D)四种数据库的数据, C(Caltech), A(Amazon), W(Webcam) 和D(DSLR),其中C有1123个,A有958个,W有295个,D有157个,数据集提供了SURF特征和DeCAF(A Deep Convolutional Activation Featurefor Generic Visual Recognition)特征

本文介绍了多个用于迁移学习的数据集,如Office-31、Office+Caltech、MNIST+USPS、Animals-with-Attributes、Office-Home和VisDA,涵盖了图像识别、手写数字识别、动物分类和视觉领域适应等多个场景,为迁移学习研究提供参考。
最低0.47元/天 解锁文章
9189

被折叠的 条评论
为什么被折叠?



