fer2013数据集介绍_迁移学习(一):相关数据集介绍

本文介绍了多个用于迁移学习的数据集,如Office-31、Office+Caltech、MNIST+USPS、Animals-with-Attributes、Office-Home和VisDA,涵盖了图像识别、手写数字识别、动物分类和视觉领域适应等多个场景,为迁移学习研究提供参考。

终于要开始做这个方向了,记录一下吧。

迁移学习常用的数据集

部分图截取自各个网站,同时感谢王晋东(知乎账号:王晋东不在家)博士的分享

(https://github.com/jindongwang/transferlearning/blob/master/ ,

数据集Office-31,Office+Caltech,VLSC都可以在该项目下找到)

一. Office-31

(Object recognition数据集)

包含了31类的数据,全部是Office的数据,数据来源为A(Amazon), W(Webcam) 和D(DSLR),BenchMark如下图所示:

cb574e10d4605422d454c5f5724e87f4.png

二.Office+Caltech

(Object recognition数据集)

包含有2533个样本,包含(C A W D)四种数据库的数据, C(Caltech), A(Amazon), W(Webcam) 和D(DSLR),其中C有1123个,A有958个,W有295个,D有157个,数据集提供了SURF特征和DeCAF(A Deep Convolutional Activation Featurefor Generic Visual Recognition)特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值