第1课时 锐角三角函数(1)
一.课前预习
1. 直角三角形ABC中,∠C=90°,∠A=60°,∠B=_______°
2. 直角三角形ABC中,∠C=90°,∠A=60°,AC=8,则AB=_______
3. 如图,△ABC中,AB=16,AC=4,则AC/AB=_______
二.师生互动,合作交流
1.问题:如图,直角三角形ABC中,∠C=90°,∠A=30°,BC=35m,求AB的长

小结:在直角三角形中,30°角所对的边等于斜边的一半,即:

思考:在上面问题中,如果BC为50m,那么AB=_______
归纳:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于1/2
2.问题:(1)如图,∠C=90°,∠A=45°,AC=2,计算∠A的对边与斜边的比BC/AB
(2)若AB=4,计算∠A的对边与斜边的比BC/AB

归纳:在一个直角三角形中,如果一个锐角等于45°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于√2/2.

归纳:1、在一个直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个______值
2、在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做________,记作______, 即:

例1、如图,在Rt△ABC中,∠C=90°,求SinA和SinB的值

三.课堂练习
1、在Rt△ABC中,∠C=90°,AB=2,AC=1,则SinB的值是__________
2、在Rt△ABC中,∠C=90°,AB=5,AC=4,则SinA的值是__________
3、在Rt△ABC中,∠C=90°,AC=6,BC=8,则SinB=__________
4、Rt△ABC中,∠C=90°,BC=4,SinA=2/3,则AB=______,AC=_______
5、如图,三角形在正方形网格中的位置如图所示,则Sinα=( )
A、3/4 B、4/3 C、3/5 D、4/5

6、在直角三角形中,锐角A的对边与斜边的比值( )
A、小于0 B、大于1 C、可以等于1 D、大于0且小于1
7、在Rt△ABC中,∠C=90°,BC=2,SinA=2/3,则AC等于( )
A、√5 B、3 C、4/3 D、√13
8、根据右图,求SinA和SinB的值

四.学习体会
通过今天的学习,我们应该掌握:
1. 锐角三角函数:∠A的正弦的概念
2. 固定角度的正弦是一个固定值
3.通过直角三角形的边长,求出某个锐角的正弦值
五.自我测试
1. 在Rt△ABC中,∠C=90°,AC=4,BC=3,则SinB的值是__________
2.在Rt△ABC中,∠C=90°,AB=10,AC=6,则SinA的值是__________
3.在Rt△ABC中,∠C=90°,AC=2,BC=2,则SinB=__________
4.如图所示,求SinD和SinE的值

5、如图,在Rt△ABC中,∠ABC=90°,CD⊥AB,BC=5,CD=4,求SinA的值

六.应用与拓展
如图所示,CD、BE是锐角三角形ABC的两条高,如果CD:BE=3:2,求Sin∠ABC:Sin∠ACB的值

欢迎关注@许多分教育课堂,之后会上传本节课的视频课,敬请关注!