lcm最小公倍数c语言,最大公约数gcd与最小公倍数lcm

##最大公约数:gcd

6392df7e1e9d506109e1f0ec02df9ffd.png ##最大公倍数:lcm

ab84fbcce6256e693c8a7af65efc3706.png ##gcd和lcm的性质:(我觉得主要是第三点性质)

64ba8ce920d0d09024653dfb548b85bb.png ####若gcd (𝑛,𝑥) = 1,那么gcd (𝑛,𝑛 − 𝑥)一定等于1 ##欧几里得算法(辗转相除法):

a15c5f18f025f51fc51a48ace31c15f2.png 证明原理:

d0ccb4df158cc7f069841f8d868ceb95.png

####代码:

int gcd(int a, int b) {

if (b == 0) {

return a;

}

return gcd(b, a%b);

}

ee742bbd9c750a92a676895e26a2e802.png 递归复杂度:

a7f2ed26bf5b08d5d90c978743f230ba.png

##algorithm 库函数里内置好了最大公约数模板 加一个头文件#include 直接调用___gcd(a,b),返回值就是a和b的最大公约数

__gcd(a,b)

##最后放上模板,求gcd和lcm:

#include

#include

using namespace std;

/*algorithm 库函数里内置好了最大公约数模板

加一个头文件#include直接调用___gcd(a,b),返回值就是a和b的最大公约数*/

int gcd(int a,int b){

if(b==0){

return a;

}

return gcd(b,a%b);

}

int lcm(int a,int b){

return a*b/gcd(a,b);

}

int main() {

int n,m;

cin>>n>>m;

/*最大公约数2种*/

cout<

cout<<__gcd>

/*最小公倍数2种*/

cout<

cout<

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值