GCD最大公约数、LCM最小公倍数 数论入门

最大公约数:


我们用gcd(a,b)来表示a、b的最大公约数,这里假设a>b。(gcd=greatest common divisor 最大公约数
求最大公约数,有一个很经典的欧几里德(递归)算法:gcd(a,b)=gcd(b, a mod b),也即:a、b的最大公约数就是b同a 除以b余数的最大公约数
你只要写出下面这个算式就很好理解这个算法了:
a=b*n + r, 这里0<=r<b
如果把欧几里德算法写成非递归的,就有下面这个辗转相除的方法来求gcd了。
1.  r ← a mod b;
2. 若r=0,则b就是最大公约数,否则转到3;
3. a ← b,b ← r,转到1。

最小公倍数:(网上的lcm实在讲得太坑了,入门有必要这么形式化么?


a、b的最小公倍数可以这样表示:lcm(a,b)(lcm=lowest common multiple 最小公倍数)
有一个简单的表达式可以求lcm:lcm(a,b) = a*b div gcd(a,b);
不过这个算法有个缺点:如果a、b都是整数(或longint),那么a×b将有可能是一个很大的数,FP就会报错,另外他的求解还基于gcd,也不是很好。
其实我们可以按照lcm的定义来算:
拿出a、b之间较大的数,如:a,然后判断a×n是不是b的倍数(n=1,2,3,4,5....),肯定有一个n满足a×n能被b整除,这个a×n就是他们的lcm
如求11和5的lcm,我们拿出11,循环判断11、11+11、11+11+11……是否是5的倍数,知道11+11+11+11+11=55时找到55就是他们的最小公倍数。
这里还有一个问题:为什么拿较大的数11来处理,而不是先拿5呢? 这个问题的答案其实是很明显的,留给大家思考吧。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值