能否用计算机证明数学定理大全,那些教材中未给出证明的定理,到底能否使用?...

那些教材中未给出证明的定理,到底能否使用?

0115bcecbdf6a581e593c4948abbb3f2.png

初中几何知识体系,是基于《几何原本》中的公理体系建立的,可以看作是公理体系的子集,在教材编写中,为了教学方便,并没有直接照搬,而是有选择性地“重建”了一套公理体系,原本许多定理,在教材中被称为公理。

教材中的几何十大公理:1.过两点有且只有一条直线.2.两点之间,线段最短.3.垂线段最短.4.过一点有且只有一条直线与已知直线垂直.5.过直线外一点有且只有一条直线与已知直线平行.(平行公理)6.同位角相等,两直线平行.7.有两边及其夹角对应相等的两个三角形全等.(SAS)8.有两角及其夹边对应相等的两个三角形全等.(ASA)9.三边对应相等的两个三角形全等.(SSS)10.斜边和一条直角边对应相等的两个直角三角形全等.(HL)

公理体系便以这十条公理为基础,先证明一批真命题作为定理,再以这些定理为基础证明一批推论,这些公理、定理、推论便构成了我们整个初中几何证明体系。既然是公理体系,那么便要遵循体系规则,按教材安排的前后顺序进行教学,原则上凡是能成为证明依据的定理,需要首先用已知结论证明。

到了九年级中考复习阶段,基本已经完成了所有定理的证明,那么综合题中,学生可使用的范围便不再受限制,可自由使用。但是受教材知识结构限制,有一部分真命题,从最早期的定理沦落成命题,那么这些真命题,能否在考试中作为依据出现?一直是复习课教学中引发争论的地方。

争论一

定理:直角三角形中,30°角所对的直角边等于斜边的一半。出现位置在人教版八年级上册,其实它有一个逆命题:直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的角为30°。

我们可以对它的正确性进行必要的证明,如下图:

d11144712f68c986aea7fa5c0c9d274f.png

根据它出现的教材位置,可以使用八年级的知识进行证明,因此,在体系中,它有资格成为一个定理。可惜的是,在教材中,它并不是,只能作为一个真命题出现。

而在学习了三角函数之后,它的证明又更进一步简化了,根据直角边与斜边的比值,得到对角的正弦值,从而也能得到30°角。

争论二

定理:直角三角形中,斜边上的中线等于斜边的一半。它也有一个逆命题,同样为真命题,三角形中,如果某边上的中线等于这条边的一半,则这个三角形是直角三角形。

我们同样可以对它的正确性进行证明,如下图:

fd3524a3a7cc83f3a60c8ed7224caeb7.png

根据该定理出现的教材位置,用证明一可以完成证明,或者在中考复习中用证明二完成,它也是一个真命题。

争论三

定理:在同圆或等圆中,同弧所对的圆周角是圆心角的一半;同弧所对的弦相等;相等的弧所对的圆心角相等。

后来教材中进行了归纳,同圆或等圆中,圆心角、圆周角、弧、弦四组量中只要有一组量相等,剩下三组量均相等。再往后学习了弦心距之后,再加上它,总共五组量,简称为“五合一”,这五组量之间的关系同样也能证明为真命题。那么补充进来的几组量可以作为证明依据使用吗?

争论四

圆的垂径定理中,可由垂直于弦的直径得到两个结论,直径平分这条弦、直径平分弦所对的弧;也可由平分弦(不是直径)的直径得到两个结论,直径垂直于弦、直径平分弦所对的弧。那么,由直径平分弦所对的弧,其实也能得到直径垂直于弦、直径平分这条弦,如下图:

9f55b8cfb33c16e9be7afeb94038e289.png

也就是说,垂径定理中的三个条件,任意一个可以得到另外两个。

以上四种争论,其实归根到底就是究竟学生在解几何综合题时,到底能否将之作为依据。

原则上,不能。

根据教材要求,也仿照公理化体系,未经证实的结论,不可作为定理直接用,但如果要使用,可先将这个命题证明一次,再利用它的结论,这样是符合教材要求的。

而在实际教学中,学生真要书写这些过程,无疑将使解答时间大大延长,对于中考120分钟的时间限定,是一大挑战,于是,在某些时候,我们默认了学生“省”步骤的做法。但作为老师,还是要有原则,不妨碍主体证明思路的步骤,省了可以,但涉及到主线思维中的关键步骤,不能省。在使用证明依据时,未经教材注明为定理的依据,不能直接使用,而是要先简要说明。

疑惑依然存在,如果在中考时,题目过程较多,那是否又可以使用上述“定理”呢?我想首先应从命题角度出发,从源头上避免证明步骤较多的情况,其次,避开有可能用到上述“定理”的条件,最后,本着人文关怀的理念,阅卷过程中,发现用到了这些定理的,不用挑刺的眼光看待。

举报/反馈

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值