对曲面的积分求椭圆的面积_此题是关于数学考研的曲面积分题∫∫(xdydz+ydzdx+zdxdy)/(x2+y2+z2)3/2,曲面是上半椭圆球面...

博客探讨了如何使用曲面积分来求解椭圆的面积,涉及数学考研中的曲面积分问题。通过高斯公式和特定的曲面选择,详细解答了两个问题,解释了为何在某些情况下需要考虑奇点并进行特殊处理。最终得出的结果与曲面无关,且与封闭曲面的积分计算方法不同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一题∫∫Σ (xdydz + ydzdx + zdxdy)/(x² + y² + z²)^(3/2)= (1/a³)∫∫Σ xdydz + ydzdx + zdxdy= (1/a³)∫∫Σ x(- ∂z/∂x)dxdy + y(- ∂z/∂y)dxdy + zdxdy= (1/a³)∫∫D a²/√62616964757a686964616fe4b893e5b19e31333332633638(a² - x² - y²) dxdy= (1/a)∫(0,2π) ∫(0,a) r/√(a² - r²) drdθ= 2π第二题要注意些地方,用高斯公式是最方便的由于这个不是封闭曲面,所以要在下面加上一个平面,但是也要绕过不连续的奇点部分所以,这个平面是一个圆环,从yz面或zx面正看这立体的平面图,是一道彩虹的样子里面的曲面是小球体x² + y² + z² = λ²,外面的曲面是椭球体x²/4 + y²/9 + z²/25 = 1P,Q,R的偏导数都相等 ==> 结果与曲面无关(跟格林公式的积分与路径无关的原理相似)选最简单的曲面Σ1:x² + y² + z² = λ²,取下侧还要补上圆环Σ2:z = 0,取下侧∫∫Σ1 (xdydz + ydzdx + zdxdy)/(x² + y² + z²)^(3/2)= (- 1/λ³)∫∫Σ1 x(- ∂z/∂x)dxdy + y(- ∂z/∂y)dxdy + zdxdy= (- 1/λ³)∫∫D λ²/√(λ² - x² - y²) dxdy= (- 1/λ)∫(0,2π) ∫(0,λ) r/√(λ² - r²) drdθ= - 2π而∫∫Σ2 (xdydz + ydzdx + zdxdy)/(x² + y² + z²)^(3/2)= ∫∫Σ2 0dxdy/(x² + y²)^(3/2) = 0原积分I = 0 - (- 2π) - 0 = 2π第二题你的思想没错,结果与曲面无关,可以任选包含奇点的曲面(外曲面取上侧,内曲面取下侧;反之亦然),总之原积分不可以包含该奇点,要把其排除在外追问谢谢再问一下第一问上半球不是关于 xOz 和yOz对称吗 又分别是y和x的奇函数? ∫∫Σ xdydz + ydzdx 为啥不等于0?给加分 谢谢!追答第一类曲面积分符合 偶倍奇零 性质第二类曲面积分符合 偶零奇倍 性质刚好调转的。∫∫Σ xdydz,分别前侧和后侧前侧的曲面为Σ1:x = √(a² - y² - z²)后侧的曲面为Σ2:x = - √(a² - y² - z²)∫∫Σ xdydz= ∫∫Σ1 xdydz + ∫∫Σ2 xdydz= [+ ∫∫D √(a² - y² - z²) dydz] + [- ∫∫D - √(a² - y² - z²) dydz]= 2∫∫D √(a² - y² - z²) dydz= 2∫∫Σ1 xdydzwww.mh456.com防采集。

更多追问追答追问我书上的答案是2π,如果不按照刚网上搜到的解题方法,我会认为你的肯定正确,但又得不到2π这个值啊,会以为答案是错的。但是刚搜到的解题方法我又不理解,他不但和你一样,构造了一椭圆平面把底部封住,就成封闭曲面了,但他又构造了一曲面,他取很小的值ξ,使 z=根号下(ξ平方-x平方-y平方),实际上他的意思是封闭曲面还要加上这个曲面,最后再减去这个曲面积分,最后的值就是2π了,WHY!追答

解设F(x,y,z)=x²+y²-1 法向量=(2x,2y,0) =2√(x²+y)(cosα,cosβ,0) 因为dydz/cosα=dzdx/cosβ 所以∫∫xdydz+2ydzdx+3zdxdy =∫∫xdydz+2yx/ydydz =∫∫3xdydz,x=√(1-y²),0<y<1 =3∫0→1√(1-y²)dy*∫0→2

我弄错了,我计算奇点的时间算出来的是0,

解:原式=∫∫∫(1+1+1)dxdydz (应用奥高公式) =3∫dθ∫rdr∫dz (作柱面坐标变换) =6π∫(1-r^2)rdr =6π(1/2-1/4) =3π/2。

他这样用的是小球的挖奇点,方向下侧

直接运用高斯公式 ∫∫ xdydz+ydzdx+zdxdy (外侧) = ∫∫∫ (1+1+1) dxdydz = 3∫∫∫ dxdydz = 3 * 球体积 = 3 * (4/3)(π*1³) = 4π

追问您好,再打扰您一下,为什么当曲面为纯球面的时候,我计算就不需要挖奇点呢,你看,同样是分母不能为零,对于纯球面来说(0,0,0)也是奇点,但我的方法是x2+y2+z2=a2带入到分母当中,直接高斯得整个球面的面积,然后取面积的一半,就是球面上侧的面积,根本没有挖奇点这个做法,怎么到了椭圆球面就要挖奇点这个做法呢,能给我讲解一下吗,给您加分,万分感谢!追答纯球也需要挖奇点,只是有的曲面代入积分函数后可以消去奇点而已!本回答被提问者采纳

先把x+y+z=2带进去之后,原曲面∑,补上三个坐标平面∑1,∑2, ∑3形成封闭曲面,然后用高斯定理。 因为在三个坐标平面上的积分为0, 所以计算如下。 原积分=(1/2)∫∫∑+∑1+∑2+∑3 xdydz+ydzdx+zdxdy =(3/2)∫∫∫dV =(3/2)*8*(1/6) =2

内容来自www.mh456.com请勿采集。

内容概要:本文探讨了在微电网优化中如何处理风光能源的不确定性,特别是通过引入机会约束和概率序列的方法。首先介绍了风光能源的随机性和波动性带来的挑战,然后详细解释了机会约束的概念,即在一定概率水平下放松约束条件,从而提高模型灵活性。接着讨论了概率序列的应用,它通过对历史数据分析生成多个可能的风光发电场景及其概率,以此为基础构建优化模型的目标函数和约束条件。文中提供了具体的Matlab代码示例,演示了如何利用CPLEX解器解决此类优化问,并强调了参数选择、模型构建、约束添加以及解过程中应注意的技术细节。此外,还提到了一些实用技巧,如通过调整MIP gap提升解效率,使用K-means聚类减少场景数量以降低计算复杂度等。 适合人群:从事电力系统研究、微电网设计与运营的专业人士,尤其是那些对风光不确定性建模感兴趣的研究者和技术人员。 使用场景及目标:适用于需要评估和优化含有大量间歇性可再生能源接入的微电网系统,旨在提高系统的经济性和稳定性,确保在面对风光出力波动时仍能维持正常运作。 其他说明:文中提到的方法不仅有助于学术研究,也可应用于实际工程项目中,帮助工程师们制定更为稳健的微电网调度计划。同时,文中提供的代码片段可供读者参考并应用于类似的问情境中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值