1、下列物理量中,不能称为向量的是( )
A、质量B、速度C、位移D、力正确答案
A
解析
解:既有大小,又有方向的量叫做向量;
质量只有大小没有方向,因此质量不是向量.
而速度、位移、力既有大小,又有方向,因此它们都是向量.
故选:A.
2、下列结论,正确的个数为( )
(1)若,都是单位向量,则=
(2)物理学中的作用力与反作用力是一对共线向量
(3)方向为南偏西60°的向量与北偏东60°的向量是共线向量
(4)直角坐标平面上的x轴、y轴都是向量.
A、1B、2C、3D、4正确答案
B
解析
解:对于(1),,都是单位向量,则不一定有=,(1)错误;
对于(2),物理学中的作用力与反作用力大小相等,方向相反,
是一对共线向量,(2)正确;
对于(3),如图所示,
方向为南偏西60°的向量与北偏东60°的向量在一条直线上,
是共线向量,(3)正确;
对于(4),直角坐标平面上的x轴、y轴只有方向,没有大小,
不是向量,(4)错误;
综上,正确的命题序号是(2)(3),共2个.
故选:B.
3、给出下列物理量:①质量;②速度;③位移;④浮力;⑤加速度;⑥路程;⑦功;⑧压强;⑨密度.其中是向量的有( )
A、3个B、4个C、5个D、6个正确答案
B
解析
解:向量是既有大小,又有方向的量;故②速度;③位移;④浮力;⑤加速度;是向量;
故向量有4个.
故选:B.
4、已知两个力,的夹角为90°,它们的合力大小为10N,合力与的夹角为60°,那么的大小为( )
A、5 NB、5NC、10ND、5 N正确答案
A
解析
解:由题意可知:对应向量如图
由于α=60°,∴的大小为|F合|•sin60°=10×=5.
故选:A.
5、一条渔船以6km/h的速度向垂直于对岸的方向行驶,同时河水的流速为2km/h,则这条渔船实际航行的速度大小为( )
A、2 km/hB、4 km/hC、2 km/hD、3km/h正确答案
A
解析
解:如图所示,
渔船实际航行的速度为
=+;
大小为
=
=
=2km/h.
故选:A.
6、已知三个力=(−2,−1),=(−3,2),=(4,−3)同时作用于某物体上一点,为使物体保持平衡,现加上一个力,则等于( )
A、(-1,-2)B、(1,-2)C、(-1,2)D、(1,2)正确答案
D
解析
解:为使物体平衡,
即合外力为零,
即4个向量相加等于零向量,
∴=(0-(-2)-(-3)-4,0-(-1)-2-(-3))=(1,2).
故选:D.
7、小船以10km/h的静水速度按垂直于对岸的方向行驶,同时河水的流速为10km/h.则小船实际航行速度的大小为( )
A、20 km/hB、20km/hC、10 km/hD、10km/h正确答案
B
解析
解:如图,设船在静水中的速度为v1=10km/h,河水的流速为v2=10km/h.
水流的速度为v2,则由v12+v22=v02,得 (10)2+102=v02,
∴v0=±20,取v0=20km/h,即小船实际航行速度的大小为20km/h.
故选:B.
8、长江南岸渡口处,江水以12.5 km/h的速度向东流,渡船的速度为25 km/h.渡船要垂直地渡过长江,则航向为
正确答案
北偏西30°
解析
解:如图,设渡船速度为,水流速度为,
则船实际垂直过江的速度为,
由题意知,||=12.5,||=25,
∵四边形OADB为平行四边形,∴||=||,
又∵OD⊥BD,∴在Rt△OBD中,∠BOD=30°,
则航向为北偏西30°.
9、如图所示,abcd为单匝矩形线圈,边长ab=10cm,ad=20cm。该线圈的一半位于具有理想边界、磁感应强度为0.1T的匀强磁场中,磁场方向与线圈平面垂直。若线圈绕通过ab边的轴以100πrad/s的角速度匀速旋转,当线圈由图示位置转过180°的过程中,感应电动势的平均值为 V;当线圈由图示位置转过90°时的瞬间感应电动势大小为 V。
正确答案
0.2V,0.2πV。
解析
解:平均感应电动势=N=2==0.2V。
瞬时感应电动势E=BL1v=BL1L2ω=0.1×0.1×0.2×100π=0.2πV。
10、物理学中的作用力和反作用力是模 且方向 的共线向量.
正确答案
相等,相反
解析
解:由物理学中的定义,作用力与反作用力大小相等,方向相反
故物理学中的作用力和反作用力是模相等且方向相反的共线向量.
11、一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态.已知F1,F2成90°角,且F1,F2的大小分别为1和2,则F3的大小为
正确答案
解析
解:∵F1,F2成90°角,
∴F1•F2=0,
∴根据题意得,
|F3|=|F1+F2|
=
=
=
=.
12、已知F=(2,3)作用一物体,使物体从A(2,0)移动到B(4,0),则力F对物体作的功为
正确答案
4
解析
解:根据题意,力F对物体作的功为
W=·=(2,3)•(4-2,0-0)
=2×2+3×0
=4.
13、(10分)如图所示,一根竖直插入水中的杆AB,在水中部分长1.0m,露出水面部分长0.3m,已知水的折射率为,则当阳光与水平面成37°角时,杆AB在水下的影长为多少?
正确答案
杆AB在水下的影长为1.15 m.
解析
解:杆在水中的折射光路图如图所示,影子长为BD.
由题意知:入射角θ=53°,设折射角为r,则根据折射定律n=
得:sinr===0.6,cosr==0.8
则tanr===
故根据几何关系得杆的影长为:
BD=+•tanr=•cot37°+•tanr=(0.3×+1×)m=1.15 m.
14、(10分)一艘船从A点出发以2km/h的速度向垂直于对岸的方向行驶,同时河水的流速为2km/h,求船实际航行速度的大小与方向(用与流速间的夹角表示).
正确答案
故船实际航行速度的大小为4km/h,方向与水流速间的夹角为60°.
解析
解:如图,设表示船垂直于对岸的速度,表示水流的速度,以AD,AB为邻边作平行四边形ABCD,则就是船实际航行的速度。
在Rt△ABC中,||=2,||=2,
∴||===4,
∴tan∠CAB==,
∴∠CAB=60°.
15、(15分)一个物体受到同一平面内三个力F1、F2、F3的作用,沿北偏东45°的方向移动了8m.已知|F1|=2N,方向为北偏东30°;|F2|=4N,方向为东偏北30°;|F3|=6N,方向为西偏北60°,求这三个力的合力F所做的功.
正确答案
见解析
解析
解:以三个力的作用点为原点,正东方向为x轴正半轴,建立直角坐标系.
则由已知可得=(1,),=(2,2),=(-3,3).
∴=++=(2-2,4+2).
又位移=(4,4).
∴·=(2-2)×4+(4+2)×4=24(J)。
关注我,获取更多资料