三角形已知边长求高公式_三角形求高为什么面积先要乘以2——图形面积计算公式教学的一些感悟...

        最近在上多边形的面积这一单元,今天刚上好梯形的面积公式推导,昨晚备课时有备到对此公式的变式题——“已知梯形面积、上底、下底,怎么求这个梯形的高。”此类问题,在前面几个课时当中也有提及,平行四边形已知面积和底,求高或已知面积和高,求底;三角形已知面积和底,求高或已知面积和高,求底。诸如此类问题一眼看去无非是对这些面积计算公式的变形,在上这个单元之前,甚至在上的过程中,我都臆想着计算面积的公式知道,那这类问题应该没什么问题了吧(孩子们应该都会做)。因为四年级我们已经学习过算式各部分间的关系了,对于平行四边形:S=ah,a=S➗h,h=S➗a;三角形:S=ah➗2,a=2S➗h,h=2S➗a;梯形:S=(a+b)h➗2,h=2S➗(a+b)等这样的公式变形应该都会。其实不然,有些孩子并不会。

        在教参中,书上的这一题求三角形的高,是这么解释的,利用方程或乘除法的互逆关系,也提醒不要忘记面积先乘2。

b62c669827ab5b7c212511eedb0a9ba2.png

       但为什么面积要先乘2?而不是先除以底再乘2?在作业中一些孩子反馈给我的就是先除以底再乘以2的,当然这样做答案也对,但,不放心。孩子对于乘除法的关系没有弄清楚,其次对于三角形面积计算公式的变形并没有深刻理解其本质,所以我觉得此公式的的变形如果仅仅依靠乘除法的互逆关系来解释是不够的,还要借助图形来深刻强调。

       在这个单元开篇,研究的是平行四边形的面积,通过割补法将平行四边形转化为长方形,进而推导出其面积计算公式:S=ah。

a8adfa18e514a6c9fb6ececf89297db3.png

        对于此面积计算公式的变形,孩子们基本没有问题,求高、求底都会求,此公式乘除法的互逆关系孩子们还是很明确的。那么后面三角形的面积公式的变形,有些孩子们为什么就有些困难呢,原因在于三角形面积公S=ah➗2,底乘以高后还要除以2,这比平行四边形面积计算多了一步,那么三角形求高,求底为什么面积要先乘以2呢?可以借助下图来解释:

7f3d60562bea4c492868b6c87e44142a.png

       面积先乘以2的理由就是要把三角形通过拼补先转化成一个平行四边形,转化成平行四边形之后利用这个转化后的平行四边形面积来求三角形的底或者高,为什么这样可以呢?利用三角形和这个平行四边形等底等高的特点。这个过程其实我们又把三角形面积公式的推导又走了一遍。这样之后,我认为孩子对于三角形求高或求底为什么要先用面积乘以2应该印象深刻了。求三角形的底就是求这个平行四边形的底,求三角形的高就是求这个平行四边形的高。

        如法炮制,对于梯形面积计算公式S=(a+b)h➗2的变形求高:h=2S➗(a+b),为什么也要先用面积乘以2,孩子应该也清楚了。

3e5efc09b25fe77e19920fa37a36a00f.png

        当然这里的等底指的是两个梯形拼成平行四边形之后的上底加下底的长度和这个平行四边形的底相等。

        所以,三角形求高求底,梯形求高都是一样的,都可以转化成平行四边形来求高求底。

        这样梳理、求同之后,我想孩子对于梯形求上底或下底应该也清楚了。

        今年是第一次教五年级,我时常感觉这个学期的量要比四年级的多而且杂,学生的负担也重,所以这个学期给我最大的感悟就是,对于一些一类、近似的问题,我们在新课结束之后,或者说单元结束之后甚至是几课时结束之后应当进行梳理、汇总、求同,而且此过程要及时,对知识进行串联和适当压缩,这样我们教的轻松,孩子也学得轻松。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值