前一章我们运用矩阵代数的方法对差分方程进行了讨论,本章将引入时间序列算子的相关概念,并使用时间序列算子来继续对差分方程进行讨论。
一、时间序列算子(滞后算子)
一般而言,我们常见的时间序列
可以视为一个无限时间序列的观测样本,常记为:
我们将引入的时间序列算子就是对这样的无限时间序列进行运算。
类比函数y=f(x)或y=g(x,w)是将一个输入x或者一组输入(x,w)通过一定处理而得到输出y的过程,时间序列算子是将一个时间序列或一组时间序列变为一个新的时间序列的操作。如乘法算子:
注意,不要将其与普通标量的乘法等同,这实际上是一个无限乘法序列的简写。对每一个时间t都有这样一个乘法式子将相应的xt转化为yt。还有一个加法算子也是常用的:
加法算子将两个时间序列xt与wt作为输入,将相应时间点上的x与w相加输出新的时间序列yt。很容易验证:
与
相等
下面我们引入之后算子的概念:
很明显,在每一个时间t上,该算子将x在时间t-1上的取值赋给y在t上的取值,这个算子我们一般记为L,即:
下面我们考虑对时间序列xt进行两次之后运算的结果:
进行两次滞后运算可以即为L2,即:
一般而言,进行k次滞后运算可以记为Lk,即:
可以简单验证以下两个等式: