常见算子使用_时间序列分析第二章 滞后算子

本文介绍了时间序列算子的概念,特别是滞后算子,用于一阶、二阶及P阶差分方程的解析。通过矩阵代数和滞后运算,阐述了如何将差分方程转化为稳定状态,并探讨了动态乘子的计算,为时间序列分析和经济数据分析提供理论基础。
摘要由CSDN通过智能技术生成

前一章我们运用矩阵代数的方法对差分方程进行了讨论,本章将引入时间序列算子的相关概念,并使用时间序列算子来继续对差分方程进行讨论。

一、时间序列算子(滞后算子)

一般而言,我们常见的时间序列

0e9b0326d3d1d2ff20f58d83203c8331.png

可以视为一个无限时间序列的观测样本,常记为:

eed1f70e50f3a32a44b14b3d6898317c.png

我们将引入的时间序列算子就是对这样的无限时间序列进行运算。

类比函数y=f(x)或y=g(x,w)是将一个输入x或者一组输入(x,w)通过一定处理而得到输出y的过程,时间序列算子是将一个时间序列或一组时间序列变为一个新的时间序列的操作。如乘法算子:

580862763a557ec8bc3566d7c6fa2a98.png

注意,不要将其与普通标量的乘法等同,这实际上是一个无限乘法序列的简写。对每一个时间t都有这样一个乘法式子将相应的xt转化为yt。还有一个加法算子也是常用的:

c86df2109bfe26c9ddf6ad83aa38195a.png

加法算子将两个时间序列xt与wt作为输入,将相应时间点上的x与w相加输出新的时间序列yt。很容易验证:

f48bd13aeb8c516e26ba573e1c86e690.png

bbbb1fe7309ba3dda681672a8a99d942.png

相等

下面我们引入之后算子的概念:

9d1c5840fe8be3f267800a47138881d3.png

很明显,在每一个时间t上,该算子将x在时间t-1上的取值赋给y在t上的取值,这个算子我们一般记为L,即:

38bf5dfe3c0868ca30729171b8875488.png

下面我们考虑对时间序列xt进行两次之后运算的结果:

9ecd1b689b36a997b6825c1963e02add.png

进行两次滞后运算可以即为L2,即:

39e38e808301ba0e7d6716a496779f6f.png

一般而言,进行k次滞后运算可以记为Lk,即:

8e824c76e25a2da0ec70928705e07e4a.png

可以简单验证以下两个等式:

1051204850bc92311e26416cdcdb86fb.png

92e1f2e9e522c063f9990cc24647d59f.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值