matlab knn,KNN算法matlab函数 ClassificationKNN.fit

本文介绍了如何在Matlab中使用ClassificationKNN函数进行KNN算法的训练和预测。通过示例详细展示了如何建立KNN模型,设置邻居数量,以及如何进行预测,包括预测类标签和概率。
摘要由CSDN通过智能技术生成

ClassificationKNN.fit:建立

mdl =ClassificationKNN.fit(X,Y):基于特征和分类标签返回分类模型。X:每行表示一个特征向量,每列表示特征向量中一个变量。Y:每行代表的是X中特征向量说代表的标签或种类。

mdl = ClassificationKNN.fit(X,Y,Name,Value):value代表K的值

ClassificationKNN.predict:预测

label = predict(mdl,Xnew):Xnew:是待预测的,跟X中特征向量一致,label是预测Xnew返回的类标签

[label,score] = predict(mdl,Xnew):score:Xnew是某一个类标签的可能性。

[label,score,cost] = predict(mdl,Xnew)

预测过程:1,寻找训练集合X中最靠近Xnew 的K个点(距离的度量采用的欧式距离)

2,记录这K个点的对应标签Y

3,把Xnew的标签分配给所有K个标签中概率最大的那一个。

example:

导入文件

load fisheriris

X = meas;

Y = species;

创建一个K=5的KNN分类器

mdl =ClassificationKNN.fit(X,Y,'NumNeighbors',5)

mdl =

ClassificationKNN:

PredictorNames: {'x1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值