ClassificationKNN.fit:建立
mdl =ClassificationKNN.fit(X,Y):基于特征和分类标签返回分类模型。X:每行表示一个特征向量,每列表示特征向量中一个变量。Y:每行代表的是X中特征向量说代表的标签或种类。
mdl = ClassificationKNN.fit(X,Y,Name,Value):value代表K的值
ClassificationKNN.predict:预测
label = predict(mdl,Xnew):Xnew:是待预测的,跟X中特征向量一致,label是预测Xnew返回的类标签
[label,score] = predict(mdl,Xnew):score:Xnew是某一个类标签的可能性。
[label,score,cost] = predict(mdl,Xnew)
预测过程:1,寻找训练集合X中最靠近Xnew 的K个点(距离的度量采用的欧式距离)
2,记录这K个点的对应标签Y
3,把Xnew的标签分配给所有K个标签中概率最大的那一个。
example:
导入文件
load fisheriris
X = meas;
Y = species;
创建一个K=5的KNN分类器
mdl =ClassificationKNN.fit(X,Y,'NumNeighbors',5)
mdl =
ClassificationKNN:
PredictorNames: {'x1