剔除异常值栅格计算器_无人驾驶之粒子滤波结合占用栅格识别跟踪动态障碍物...

本文介绍了一种利用粒子滤波进行动态障碍物跟踪的方法,通过在2D栅格中用粒子表示环境占用和速度。算法避免了传统栅格速度估计,直接基于粒子状态进行更新。每个栅格的占用概率由粒子数量决定,速度估计考虑粒子群的运动。通过预测、测量模型计算、重采样和聚类等步骤,实现了对环境的精确描述和障碍物跟踪。
摘要由CSDN通过智能技术生成

Modeling and Tracking the Driving Environment With a Particle-Based Occupancy Grid

本文提出了一种新的表述栅格占用和栅格速度估计的方法,用这种方法描述周围环境,并以此为基础更新算法。

栅格占用的可能性用栅格内粒子的数量表示,粒子本身带有藐视栅格占用的各种假设。同时,粒子也是环境模型的基础组成。跟踪算法是面向粒子的,而不是栅格。

粒子可以根据本身代表的速度和运动方向,在不同栅格中穿行。粒子也符合标准粒子滤波,也会被重采样和销毁。

测量数据来自高成图,高成图的生成使用论文【17】,【18】,【19】中的算法。

传统的占用栅格跟踪算法使用“前向传感器概率模型”,描述每个栅格的概率分布,而不是将动态栅格描述成高维空间。

本文提出的算法使用运动的粒子,估计粒子的运动状态,因此不需要估计栅格速度概率分布。不需要像论文【7】,【10】中一样,估计栅格速度,也不用假设一个栅格只属于一个障碍物且只有一个速度,也不用估计这个速度。速度估计的结果来自于存活或者删除的粒子。

每个栅格中的粒子可以有不同的速度,代表一个栅格可能有多个障碍物。本文提出的算法复杂度与栅格数量和每个栅格允许的最大粒子数有线性关系,越多精度越高但计算越慢。另外,使用其他的运动参数不会影响算法的速度,因为计算是在粒子层完成的。

本文将3D空间转换为2D栅格,分辨率0.2m,范围50m*24m,即250*120。

跟踪算法的目的是为了计算每个栅格的占用概率,和每个栅格的速度。

z轴向前,x轴向右,y轴向上。每个粒子表述为:

粒子所在栅格的行

粒子所在栅格的列

粒子的列速度

粒子的行速度

粒子存在的周期

栅格占用的概率 = 每个栅格存在的粒子数 / 每个栅格允许的最大粒子数

速度估计:

如果

大,表示每个栅格的速度假设多,跟踪算法可以更加精确的估计速度并且可以跟踪快速的物体,但会降低计算速度。

如果栅格只有一个物体,则栅格的速度是其中所有粒子速度的平均。如果有多个物体,则需要聚类。粒子总数可以代表栅格的概率密度和速度。跟踪算法的目的:使用测量信息(高程度)创建、更新、销毁粒子,以准确的描述环境。

算法描述

一、 预测每个粒子的运动状态,向预测后的运动状态中加入随机扰动。

二、 使用高成图,计算每个栅格的测量模型。测量模型用于加权和重采样粒子。通过加权和重采样,对每个栅格中的粒子进行增加或减少。

三、 估计每个栅格的占用和速度,并根据速度方向聚类目标物

一、预测

状态估计使用速度

和角速度
,以及两帧之间的时间间隔。

相邻测量间的角度和距离为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值