计算机处理自然信息的过程,计算机处理自然语言的探索.docx

PAGE 1

甘肃政法学院

本科学年论文 (设计)

题 目 计算机处理自然语言的探索

计算机科学学院信息管理与信息系统专业2010级信管班

学 号: 201081020142

姓 名:____ 杨 雨 龙______

指导教师:______魏___芸_______

成 绩:___________________

完成时间:_________年 _______月

计算机处理自然语言的探索

摘 要:自然语言处理是研究人与计算机之间语言交互的一门交叉型学科,也称为计算机语言学。它的研究主要是研究人与计算机之间用自然语言进行有效通信的各种理论与方法。它涉及了数学、语言学、逻辑学、和心理学等诸多研究领域,是一门非常复杂的学科。所以本文主要通过描述性语言来简单介绍一下计算机处理自然语言的发展历史,自然语言处理的基本问题,包括汉语自动分词,汉语文本自动标注,句法分析,语料库处理等,以及在实现语言的人机交互处理时的一些简单技术和自然语言处理在现实生活中的应用以及发展趋势。

关键词:计算机;自然语言;人工智能;人机交互

The Exploration Of Computer Processing Natural Language

Abstract:natural language processing is human and computer language interaction between a door cross type discipline, Its research mainly is used between human and computer natural language effectively all kinds of communication theory and method. It involved mathematics, linguistics, logic, and psychology and so on many research fields, is a very complicated subject. So this paper mainly through the descriptive language to a brief introduction of computer processing natural language development history, The basic problem in natural language processing, including Chinese automatic word segmentation, Chinese text automatic tagging, syntactic analysis, corpus processing, as well as in achieving language interactive processing some simple technology and natural language processing in real life application and development trend.

Key words:Computer; Natural language; Artificial intelligence; Human-computer interaction

目录

TOC \o "1-3" \h \z \u 计算机处理自然语言的探索 1

第一章引言 3

第二章 自然语言处理的定义 3

1.1自然语言 3

1.2 自然语言处理 4

第三章 自然语言处理研究的历程 4

3.1以关键词匹配为主流的早期历史 4

3.2 以句法-语义分析为主流的中期历史 5

3.3 走向实用化和工程化的近期历史 6

第四章 自然语言处理的基本技术 7

4.1自动文摘技术 7

4.1.1基于统计的自动文摘 7

4.1.2 理解生成文摘 7

4.1.3 基于信息抽取的自动文摘 8

4.2文本的自动校对技术 8

4.2.1 英文文本中的错误发现与纠正方法 8

4.2.2上下文相关错误的纠错方法 9

4.3 人机交互技术 9

第五章 自然语言处理的应用、意义及发展趋势 10

5.1自然语言处理的应用 10

5.2 自然语言处理的意义 11

5.3 自然语言处理的发展新趋势 11

第六章 总结 12

参考文献 13

引言

自然语言处理是研究如何利用计算机来

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值