Python函数非常的灵活,今天学习了python函数的以下几个知识点:
一、在函数中可以定义子函数,并且可以将子函数作为函数的返回对象返回给外部
测试:
def myconnecttostring(*args):
def fin():
strResult=''
for strA in args: #这儿函数fin使用的是它的父函数myconnecttostring的形式参数(也就是myconnecttostring的局部变量),那么fin这个函数是闭包的。
strResult+=strA
return strResult
return fin
lstA=list('孤荷凌寒的QQ号是:578652607')
print(lstA)
f=myconnecttostring(*lstA)
print(f) #打印此作为函数返回对象的函数f在内存中的地址,下面重复执行一次,将发现每次返回的函数对象并不是同一个
strA=f() #f既然是一个函数,那么就可以执行它
print(strA)
f=myconnecttostring(*lstA) #完全相同地再调用一次函数myconnecttostring,但作为对象返回的函数f与之前不是同一个对象!!
print(f) #再看看这个新的函数f在内存中的地址与前一个是不一样的。
运行结果 :
['孤', '荷', '凌', '寒', '的', 'Q', 'Q', '号', '是', ':', '5', '7', '8', '6', '5', '2', '6', '0', '7']
.fin at 0x00000290DC75A2F0>
孤荷凌寒的QQ号是:578652607
.fin at 0x00000290DC77D400>
二、递归
一个函数 体的内部代码块中的代码 再次调用 自己,则称之为递归。
递归是一种特殊的循环。
这种循环的终止在于达到设定的条件时就不再调用自己,那么递归循环结束。
测试阶乘:
def jiecheng(intMax):
if intMax==1:
return 1
return intMax * jiecheng(intMax-1)
intM=10
intResult=jiecheng(intM)
print(intResult)
运行结果:
3628800
测试函数jiecheng的核心语句是:
intMax * jiecheng(intMax-1)
也就是说不断递归调用函数jiecheng自己来做intMax-1的阶乘
最后一个递归调用函数jiecheng时其实是一次性完成了:
10x9x8x7x6x5x4x3x2x1
的计算。
如果 intMax的值设置得非常大,那么让cpu一次执行这样的运算,可能会造成系统算力崩溃。
于是这种把所有计算全部堆到最后一次调用递归函数 时才一次计算的方法是不可取的,我们应当使用
尾递归
测试:
def jiecheng(intMax):
if intMax==1:
return 1
return jiechengsub(intMax,1) #函数 jiechengsub 才是真正的递归调用的函数,给jiechengsub的形参intLastResult传递的实参为1,是因为,第一次调用jiechengsub时,之前的递归计算结果还没有,就是1,因为1乘以任何数还等于任何数。
#函数 jiechengsub 的第一个形参intCurBig表示当前阶乘计算到最大值的哪一个数来了;第二个形参intLastResult表示在本次调用之前已经计算过的阶乘的积
def jiechengsub(intCurBig,intLastResult):
intCur=intCurBig * intLastResult #先计算当前最大数intCurBig与之前已经取得的部分阶乘结果intLastResult相乘,这儿就把计算分解到每次递归都计算一次
if intCurBig!=1:
intSub=jiechengsub(intCurBig-1,intCur) #然后再次递归调用的时候,已经将本次调用的计算结果 intCur作为形参intLastResult的实参传递给下次调用了
return intSub
else:
return intCur #如果intCurBig已经为1,则递归过程已经结束,不再递归调用,返回最终结果 。
intM=10
intResult=jiecheng(intM)
print(intResult)
运算结果:
3628800
尾递归将庞大的计算分解到每次计算中都计算一点,这样分散的计算才不会对电脑CPU造成过重的负担,是比较科学的递归设计方案。
欢迎联系我加入倡导终身学习终身成长的社群——
就是要学社群www.941xue.com/index.aspx