matlab列主元高斯消去法程序,高斯消元法,列主元素消元法及LU分解法的matlab程序...

高斯消元法,列主元素消元法及LU分解法的matlab程序解析及举例

§2.2.1高斯消元法的MATLAB程序

function [RA,RB,n,X]=gaus(A,b)

B=[A b]; n=length(b); RA=rank(A);

RB=rank(B);zhica=RB-RA;

if zhica>0,

disp('请注意:因为RA~=RB,所以此方程组无解.')

return

end

if RA==RB

if RA==n

disp('请注意:因为RA=RB=n,所以此方程组有唯一解.')

X=zeros(n,1); C=zeros(1,n+1);

for p= 1:n-1

for k=p+1:n

m= B(k,p)/ B(p,p);

B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);

end

end

b=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);

for q=n-1:-1:1

X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);

end

else

disp('请注意:因为RA=RB

end

end

运行命令及结果

a=[2.51 1.48 4.53;1.48 0.93 -1.30 ;2.68 3.04 -1.48];

b=[0.05;1.03;-0.53];[RA,RB,n,X] =gaus (A,b)

请注意:因为RA=RB=n,所以此方程组有唯一解.

RA =

3

RB =

3

n =

3

X =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值