解决约瑟夫环问题:n个死囚犯围成一圈报数游戏的算法实现

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:约瑟夫环问题是一个经典的数学问题,涉及到一群围成一圈的人按规则进行淘汰直到剩下一人。本文详细介绍了这个问题的变体,其中n个死囚犯从1报数至m,报到m的死囚犯被处决,然后从下一个人继续报数,直到只剩下一个死囚犯。解决此问题可以采用递归方法,对于大规模问题,则推荐使用动态规划以优化性能。文章还提供了一种基于C++的编程实现,并建议了多种可能的算法和数据结构解决方案,如链表模拟、Floyd判圈算法和矩阵快速幂运算,以提高计算效率。这个问题的解决不仅考验编程能力,还涉及到递归、动态规划等计算机科学基础知识。 oj_从1开始报数_编号1至n_n个死囚犯围成一圈_报到数m时_继续上述操作_

1. 约瑟夫环问题介绍

1.1 问题的起源与定义

约瑟夫环问题,又称为约瑟夫斯问题(Josephus problem),源自于古代犹太历史学家弗拉维奥·约瑟夫斯的一段叙述。在公元73年的犹太战争中,约瑟夫斯与40名战友被罗马军队包围在一个山洞中,他们决定宁愿自杀也不成为战俘。约瑟夫斯与另外一人计算了一种排序方式,让自己和另一人最后留下来,并成为战斗后存活下来的两个人之一。这个问题后来被数学化,形成了一类循环消除问题的经典模型。

1.2 问题的现实意义

从计算机科学的角度来看,约瑟夫环问题不仅是一个有趣的数学游戏,它同样具有实际的应用背景。在现实生活中,我们可能会遇到需要循环处理问题的场景,例如处理环形队列、设计一个循环调度系统等。约瑟夫环问题的解决方案可以应用于这些领域,从而帮助开发者设计出更高效的算法和数据结构。此外,约瑟夫环问题也是学习计算机科学中一些重要概念,如递归、动态规划、链表等的良好切入点。

2. 递归方法解决约瑟夫环问题

2.1 约瑟夫环问题的数学模型

2.1.1 问题的数学描述

约瑟夫环问题是一个著名的数学问题,可以描述为:n个人围成一圈,从第k个人开始报数,每次报到m的那个人出列,之后从下一个人开始重新报数,直到所有人都出列。用数学语言表达,就是给出人数n,起始位置k,报数间隔m,求出列的顺序。

2.1.2 递归模型的建立

递归是一种在解决问题时反复调用自身的方法。为了解决约瑟夫环问题,我们可以建立一个递归模型,将问题分解为更小的问题。当一个人出列时,问题的规模就缩小了一,而我们又从下一个人开始重新报数。这个过程中,每次递归都依赖于前一个递归的结果,直到人数减少到1,问题自然结束。

2.2 递归方法的基本原理

2.2.1 递归函数的概念

递归函数是一种在其定义中调用自身的函数。在编程中,递归函数需要有基本条件,以防止无限递归。对于约瑟夫环问题,基本条件可以是当只剩一个人时,直接返回这个人的位置。

2.2.2 递归过程的剖析

递归过程是一个不断拆分问题的过程。对于约瑟夫环问题,每次递归都相当于在解决一个子问题:即在n-1人的圈中,从第k个人开始报数,报到m-1的人出列后继续。递归过程必须在某个时刻停止,这就是递归的终止条件。

2.3 递归解法的实现和优化

2.3.1 基本递归代码实现

以下是一个用递归方法解决约瑟夫环问题的Python示例代码:

def josephus(n, k, m):
    if n == 1:  # 基本条件,只剩一个人时
        return 0
    else:
        # 递归求解(n-1)个人的问题,并加上开始的位置k
        return (josephus(n - 1, k, m) + m) % n

n = 10
k = 1
m = 3
print(f"出列的顺序为:{[josephus(i, k, m) for i in range(1, n+1)]}")
2.3.2 递归深度与性能优化

递归方法虽然简洁直观,但是每次递归都会产生新的栈空间,当问题规模大时,可能会导致栈溢出。因此,我们可以通过增加循环来减少递归深度,从而避免栈溢出的风险。例如,可以将递归过程转换为一个循环过程,通过模拟递归过程来优化性能。

def josephus_iter(n, k, m):
    people = list(range(1, n+1))  # 初始化人员编号列表
    index = k-1  # 起始索引位置
    while len(people) > 1:
        index = (index + m - 1) % len(people)  # 模拟递归过程
        people.pop(index)  # 出列操作
    return people[0]

print(f"出列的顺序为:{[josephus_iter(i, k, m) for i in range(1, n+1)]}")

通过这种方式,我们将递归转换为迭代,减少了栈的使用,提高了程序的性能和稳定性。

3. 动态规划优化递归

3.1 动态规划的基本概念

3.1.1 动态规划的特点

动态规划(Dynamic Programming,DP)是一种算法思想,它通过将原问题分解为相对简单的子问题的方式来求解复杂问题。其核心在于分治策略,将问题逐步细化,并缓存已经解决的子问题的解,避免重复计算,从而显著提高求解效率。

动态规划的关键特点包括: - 重叠子问题(Overlapping Subproblems):子问题在求解过程中不断出现,且多次出现时并不需要重复计算。 - 最优子结构(Optimal Substructure):问题的最优解包含其子问题的最优解,即可以通过组合子问题的最优解构造出原问题的最优解。

3.1.2 动态规划与递归的关系

动态规划和递归在许多方面有着紧密的联系。在本质上,动态规划是递归的一种优化,特别适用于存在大量重叠子问题的场景。使用递归的方法时,可能会对相同的子问题进行多次计算。动态规划通过存储子问题的解(通常使用数组等数据结构)来避免这种计算上的浪费。

在某些情况下,递归实现可以作为动态规划的起点。开发者可以从递归的角度理解问题,然后通过添加记忆化(Memoization)或通过表格填充(Tabulation)的方法将递归转化为动态规划,从而减少不必要的计算。

3.2 动态规划解决约瑟夫环问题

3.2.1 动态规划模型的构建

针对约瑟夫环问题,我们可以通过动态规划构建一个从后往前推导的模型。考虑最后剩下一个人时的情况,这个人的位置就是我们要求的结果。然后我们反向考虑每个人能否存活到剩下最后一个人的情况。

构建动态规划模型的关键在于定义状态和状态转移方程。在约瑟夫环问题中,我们可以定义 dp[i] 表示当有 i 个人时最后剩下人的位置。因此,状态转移方程可以是:

dp[i] = (dp[i-1] + m - 1) % i

其中 m 是报数的间隔, dp[i-1] 是从 i-1 个人中最后剩下人的位置。

3.2.2 状态转移方程的推导

状态转移方程的推导基于如下逻辑:如果已知 i-1 个人时的解 dp[i-1] ,那么对于 i 个人,最后剩下的人的位置将是从 dp[i-1] 的位置开始,再往前跳 m 个人的位置,然后再模上当前总人数 i

为了理解这个过程,我们可以假设 dp[i] 已经被求出。从第 dp[i] 个人开始报数,报到 m 时,此时应该出列的人的位置是 dp[i] + m - 1 (因为报数是从1开始的,所以要减去1)。但因为是循环队列,所以要模上总人数 i ,得到的新位置还要在 i 个人中处于有效位置。因此,最终的状态转移方程表示了从 i-1 i 的解的求解过程。

3.3 动态规划的优势和局限性

3.3.1 动态规划的优势分析

动态规划在解决具有重叠子问题和最优子结构的问题时表现出色。它将复杂问题简化为一系列子问题,并通过递推关系高效计算出最终解。与递归解法相比,动态规划能够大幅度减少计算次数,提高效率。

具体到约瑟夫环问题,动态规划可以一次性计算出所有可能的人数下的解,并存储在数组中,这样无论问题规模多大,都可以在常数时间内直接查找到结果。

3.3.2 解决问题的适用场景

尽管动态规划非常强大,但它也有局限性。其适用场景主要在子问题的划分和解的重用性上。如果问题不存在重叠子问题,那么使用动态规划可能不是最优选择,反而会增加额外的存储开销和复杂度。

针对约瑟夫环问题,动态规划适用是因为问题具有明确的递推关系,并且子问题的解可以被重复利用。这使得动态规划在解决此类问题时具有明显的优势。

在编程实现中,动态规划能够通过迭代的方式逐步构建出问题的解,而不需要递归地深入每一层。这种通过迭代构造解的方法在实际编程时往往更直观,也更容易理解和调试。

def josephus(n, m):
    dp = [0] * (n + 1)
    dp[1] = 0
    for i in range(2, n + 1):
        dp[i] = (dp[i - 1] + m) % i
    return dp[n]

# 测试
n = 10
m = 3
print(f"最后剩下人的位置是:{josephus(n, m)}")

以上代码演示了如何通过动态规划解决约瑟夫环问题。通过迭代的方式,从最简单的情况开始,逐步构造出复杂问题的解,并使用列表 dp 来存储不同人数下的解。由于动态规划的无后效性,我们不需要存储所有的过程细节,只需要最后的解即可。

在实际应用中,对于大型问题,动态规划往往能显著减少计算时间,但需要注意的是,空间复杂度也会随着问题规模的增大而增加。因此,在空间资源有限的情况下,如何平衡时间和空间的开销就成为了设计动态规划算法时的一个重要考量点。

4. C++实现约瑟夫环问题

4.1 C++语言概述

4.1.1 C++的基本语法

C++是一种静态类型、编译式、通用的编程语言,它是C语言的一个超集。C++支持多种编程范式,包括过程化、面向对象和泛型编程。C++语言广泛应用于系统/应用软件开发、游戏开发、实时物理模拟等领域。其特性如封装、继承和多态使得C++在处理复杂系统时具有强大的能力。

基本语法包括数据类型(基本类型如int、float、char等和复合类型如结构体、类等)、控制结构(if语句、循环语句等)、函数定义和使用,以及操作符重载等。

4.1.2 C++的面向对象特性

C++的面向对象特性包括类的定义、对象的创建和使用、继承、多态、抽象以及封装。类是C++中创建新类型的基础。通过类可以定义数据和操作数据的方法。

继承允许创建一个类,该类继承另一个类的属性和方法。多态则允许使用父类指针或引用调用派生类的对象的方法。抽象允许创建纯虚函数,它是类的接口,但不提供实现。封装是隐藏对象的内部状态和行为的过程,只通过公共接口与外部交互。

4.2 C++编程实现约瑟夫环

4.2.1 链表数据结构的选择与实现

为了在C++中实现约瑟夫环问题,选择链表数据结构是因为它易于模拟循环结构。每个节点包含两个信息:一个是存储的数据(例如人员编号),另一个是指向下一个节点的指针。下面为链表节点的简单实现:

#include <iostream>

struct Node {
    int data;       // 存储人员编号
    Node* next;     // 指向下一个节点的指针

    // 构造函数
    Node(int d) : data(d), next(nullptr) {}
};

4.2.2 约瑟夫环问题的C++代码编写

通过定义一个链表来模拟约瑟夫环问题,我们需要执行的操作是按顺序删除节点直到链表为空。以下是C++代码的实现:

Node* josephusCircle(Node* head, int m) {
    if (head == nullptr || m <= 0) {
        return nullptr;
    }

    Node* current = head;
    Node* prev = nullptr;

    while (current->next != current) {
        // 找到要删除节点的前一个节点
        for (int i = 1; i < m; ++i) {
            prev = current;
            current = current->next;
        }
        // 删除第m个节点,即当前节点
        prev->next = current->next;
        std::cout << "Removed " << current->data << std::endl;
        delete current;
        current = prev->next;
    }
    return current;
}

4.3 C++编程技巧和调试

4.3.1 C++编程中的常见错误分析

在C++编程中,常见错误包括内存泄漏、指针悬挂(dangling pointers)、越界访问、逻辑错误以及资源管理不当等。指针悬挂是指在删除或释放指针指向的内存后,没有将指针设置为 nullptr ,导致该指针指向无效的内存区域。

为了避免这些错误,C++提供了智能指针如 std::unique_ptr std::shared_ptr 来自动管理内存。使用这些智能指针可以减少内存泄漏的风险。

4.3.2 程序的调试与性能优化

在编写约瑟夫环问题的程序时,使用调试工具(例如GDB)可以逐步跟踪程序执行,检查变量值和内存状态。此外,性能优化可以从算法复杂度、内存管理、循环展开等方面进行。例如,为了提高性能,可以在删除节点后立即回收内存,避免过多的删除操作累积。

针对约瑟夫环问题,我们还可以使用迭代而不是递归来减少函数调用栈的开销。此外,在循环链表中,可以使用尾节点指针来提高遍历的效率,因为不需要从头节点开始遍历链表。

// 假设有一个尾节点指针tailNode
Node* tailNode = nullptr;
// 初始化链表的尾节点指针
// ...
// 在josephusCircle函数中使用尾节点指针进行迭代
for (int i = 1; i < m; ++i) {
    tailNode = tailNode->next;
}

通过逐步深入的讲述和代码实现,本章节为读者提供了C++语言中约瑟夫环问题实现的完整视角,包括链表的构建、节点的删除操作以及编程过程中的常见错误和调试技巧。在后续章节中,我们将继续探讨更多高级的数据结构和算法技巧,以解决约瑟夫环问题。

5. 数据结构选择:链表模拟环

在分析约瑟夫环问题时,一个合适的解决方案需要一个能够高效模拟问题中提到的环形结构的数据结构。链表作为一种动态数据结构,其节点间的线性链接特性使其成为模拟环形结构的理想选择。本章将详细介绍链表数据结构以及如何使用链表来模拟环形结构,并讨论链表的优化和算法实现。

5.1 链表数据结构的介绍

5.1.1 链表的基本组成

链表是一种常见的数据结构,由一系列节点组成,每个节点包含数据部分和指向下一个节点的引用(在单向链表中)或指向下一个和上一个节点的引用(在双向链表中)。链表的一个显著特点是它可以动态地进行数据的插入和删除操作,无需预先分配固定大小的存储空间。

flowchart LR
    A[头节点] -->|指针| B[节点1]
    B -->|指针| C[节点2]
    C -->|指针| D[节点3]
    D -->|指针| E[...]
    E -->|指针| F[尾节点]

5.1.2 链表的操作特点

链表操作主要包括遍历、插入和删除。遍历链表时,需要从头节点开始,通过每个节点的指针逐个访问,直到尾节点。插入和删除操作涉及到修改节点之间的指针关系,能够以O(1)的时间复杂度完成,前提是操作的位置已经知道。

5.2 链表模拟环形结构

5.2.1 链表构建环形逻辑

为了使用链表构建一个环形结构,我们需要使链表的最后一个节点的指针指向头节点,从而形成一个闭环。这样,当我们遍历链表时,可以无限制地继续访问下去,而不会遇到空指针错误。

struct Node {
    int data;
    Node* next;

    Node(int d) : data(d), next(nullptr) {}
};

void createCircularLinkedList(int n) {
    if (n <= 0) return;

    Node* head = new Node(1);
    Node* current = head;

    for (int i = 2; i <= n; ++i) {
        current->next = new Node(i);
        current = current->next;
    }
    current->next = head; // 最后一个节点指向头节点形成环形
}

5.2.2 链表在约瑟夫环中的应用

在约瑟夫环问题中,可以通过构建一个包含n个节点的环形链表来模拟,每个节点代表一个人。通过模拟出列和入列的过程,我们可以找出最后剩下的那个人。这种模拟通常从一个头节点开始,遍历链表,每次跳过k个节点进行删除操作,直到链表上只剩下一个节点。

5.3 链表优化与算法实现

5.3.1 链表操作的时间复杂度分析

链表的操作复杂度与操作位置有关。对于头节点的操作时间复杂度为O(1),而对于链表中间的节点,查找时间复杂度为O(n),插入和删除操作的时间复杂度为O(1),前提是已经定位到了具体的位置。

5.3.2 实际问题中的链表应用案例

在解决约瑟夫环问题时,我们可以使用链表来构建环形结构,并通过遍历链表来模拟整个过程。考虑到性能优化,可以预先计算出每次应该删除的节点位置,并使用指针直接跳转到这个位置,而不是从头节点逐个遍历到删除位置。

// 假设我们已经构建了一个包含n个节点的环形链表

Node* josephusCircle(int n, int k) {
    Node *current = head, *prev = nullptr;
    while (current->next != current) {
        for (int i = 1; i < k; ++i) {
            prev = current;
            current = current->next;
        }
        prev->next = current->next; // 删除第k个节点
        delete current;
        current = prev->next;
    }
    return current;
}

以上代码段实现了在环形链表中按照约瑟夫环的规则进行删除操作,直到链表中只剩下一个节点。代码中涉及到的操作都是基于链表的基本操作进行的,包括遍历、删除和指针的重新链接。每次删除操作都是将链表中第k个节点删除,优化的关键在于减少不必要的遍历,直接跳转到需要删除的节点位置。

6. 高级算法:Floyd判圈算法

在第五章我们深入探讨了如何利用链表数据结构来模拟和解决约瑟夫环问题,这一章节我们将转入另一个高级算法——Floyd判圈算法,并详细分析其原理和实际应用。Floyd判圈算法是一种用于检测链表中是否存在循环的算法,同时也适用于更复杂的图论问题。由于其在检测循环中的高效性,Floyd算法在约瑟夫环问题中具有独特的应用价值,尤其是在处理大规模数据时。

6.1 Floyd判圈算法的原理

6.1.1 判圈算法的提出背景

Floyd判圈算法,也被称作龟兔赛跑算法,是著名计算机科学家Robert W. Floyd于1967年提出的。该算法的设计灵感来源于龟兔赛跑的故事:在速度不同的两只动物进行赛跑时,快的总会追上慢的,就如同在有环的链表中,快指针最终会追上慢指针一样。Floyd算法采用两个指针,以不同的速度遍历链表,判断是否存在环。

6.1.2 算法的逻辑推导过程

算法的主要思想是使用两个移动速度不同的指针,分别称为慢指针(slow)和快指针(fast)。慢指针每次移动一步,而快指针每次移动两步。如果链表中存在环,则快指针最终会追上慢指针。通过这一特性,我们便可以判断链表是否有环,并找到环的起始位置。

6.2 Floyd算法的具体实现

6.2.1 算法的步骤拆解

算法的具体实现可以分解为以下步骤:

  1. 初始化两个指针,slow和fast,都指向链表的头节点。
  2. 移动slow指针,每次只走一步。
  3. 同时移动fast指针,每次走两步。
  4. 如果链表有环,那么在某一步中,fast指针将追上slow指针,此时判断slow是否等于fast,若相等,则存在环。
  5. 若没有环,fast指针会先到达链表尾部。

6.2.2 代码实现的要点解析

下面是一个用C++实现的Floyd判圈算法的示例代码:

struct ListNode {
    int val;
    ListNode *next;
    ListNode(int x) : val(x), next(nullptr) {}
};

bool hasCycle(ListNode *head) {
    ListNode *slow = head, *fast = head;
    while (fast && fast->next) {
        slow = slow->next;          // 慢指针每次走一步
        fast = fast->next->next;    // 快指针每次走两步
        if (slow == fast) {
            return true;            // 快慢指针相遇,说明存在环
        }
    }
    return false;                   // 遍历结束,没有相遇,不存在环
}

在这段代码中,我们定义了一个简单的链表节点结构体ListNode,然后通过两个指针slow和fast来遍历链表。如果链表有环,快指针最终会追上慢指针,使得它们指向同一个节点,从而返回true。如果没有环,fast指针会到达链表尾部,while循环会结束,函数返回false。

6.3 Floyd算法的应用场景

6.3.1 解决约瑟夫环问题的实例

Floyd算法在解决约瑟夫环问题中的一个应用实例是:利用算法先检测出是否存在环,如果存在环,那么再进一步应用其他算法来解决具体的约瑟夫环问题。

例如,在某些特殊情况下,如果我们知道约瑟夫环的总人数和报数的规律,我们可以利用Floyd算法检测在报数过程中是否会产生环,并根据环的长度来计算出最终胜利者的编号。

6.3.2 算法的扩展与变种

Floyd算法不仅适用于单链表,还可以用于检测图中的环路。比如在有向图中,如果从某个节点出发,经过若干步之后,又回到了这个节点,那么就可以认为在图中存在一个环。

在实际应用中,Floyd算法还有很多变种和扩展,如Floyd-Warshall算法,用于计算所有顶点对之间的最短路径。这些算法的核心思想都与Floyd判圈算法类似,都是利用不同速度的“追赶”机制来解决问题。

Floyd算法在图论问题中的应用非常广泛,这要求我们在编程实现时,要深刻理解算法原理,准确地将其应用到实际问题中去。通过本章节的介绍,我们可以看到,Floyd判圈算法不仅在检测链表环路方面有着显著的优势,而且在更复杂的数据结构问题中也扮演着重要角色。

7. 矩阵快速幂运算

7.1 快速幂运算的基本概念

7.1.1 快速幂运算的数学基础

快速幂运算是基于分治法思想,它允许我们在对大整数进行幂运算时达到比传统循环法更低的时间复杂度。具体来说,如果我们需要计算a的n次幂(a^n),可以将问题转化为:

  • 如果n是偶数,则a^n = (a^(n/2))^2
  • 如果n是奇数,则a^n = a * (a^((n-1)/2))^2

这样,通过递归或迭代的方式,可以将幂运算的次数大幅减少,从而实现快速幂运算。

7.1.2 快速幂运算的优势分析

快速幂运算的核心优势在于其时间复杂度的显著降低。在不使用快速幂的情况下,计算a^n的时间复杂度是O(n)。而使用快速幂算法后,时间复杂度可以降低到O(log n)。在处理大数运算时,这种性能上的提升是非常显著的。

7.2 快速幂算法在约瑟夫环中的应用

7.2.1 矩阵快速幂的实现步骤

在约瑟夫环问题中,矩阵快速幂可以用来高效计算每次循环后的位置变化。具体步骤如下:

  • 构造转移矩阵M,该矩阵表示每轮操作后每个人的位置变化。
  • 将n转化为二进制形式,这将决定快速幂算法中的循环次数。
  • 使用快速幂算法计算矩阵M的n-1次幂。
  • 将得到的矩阵与初始位置向量相乘,得到最终结果。

7.2.2 约瑟夫环问题的数学转化

约瑟夫环问题可以通过线性代数的方法转化为矩阵运算问题。每个人的位置可以用一个向量表示,每次操作相当于对这个向量进行线性变换。通过矩阵表示这个变换,我们可以利用矩阵乘法来模拟整个约瑟夫环的过程。

7.3 快速幂算法的优化和扩展

7.3.1 优化策略与性能分析

在实现快速幂算法时,通常需要对递归或迭代过程进行优化。优化策略包括:

  • 避免递归导致的栈溢出问题,可以采用迭代方式进行实现。
  • 在实现过程中,要注意模运算的处理,防止在乘法过程中出现整数溢出。
  • 对于结果需要取模的情况,可以在每次乘法操作后立即取模,从而避免中间结果过大。

7.3.2 算法的普适性与局限性讨论

矩阵快速幂是一种通用的算法,不仅适用于约瑟夫环问题,还可以扩展到其他需要快速计算幂的场合。然而,算法的局限性在于它依赖于数学模型的建立,这需要一定的线性代数知识。此外,在处理非整数幂或者非常大的幂时,算法本身需要进行适当的修改和扩展。

本章节介绍了矩阵快速幂算法在约瑟夫环问题中的应用及其优势。通过对比快速幂算法与传统算法的性能,我们认识到了优化算法在解决大规模问题时的重要性和必要性。矩阵快速幂的优化策略和适用场景也给予了我们扩展算法应用的思路。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:约瑟夫环问题是一个经典的数学问题,涉及到一群围成一圈的人按规则进行淘汰直到剩下一人。本文详细介绍了这个问题的变体,其中n个死囚犯从1报数至m,报到m的死囚犯被处决,然后从下一个人继续报数,直到只剩下一个死囚犯。解决此问题可以采用递归方法,对于大规模问题,则推荐使用动态规划以优化性能。文章还提供了一种基于C++的编程实现,并建议了多种可能的算法和数据结构解决方案,如链表模拟、Floyd判圈算法和矩阵快速幂运算,以提高计算效率。这个问题的解决不仅考验编程能力,还涉及到递归、动态规划等计算机科学基础知识。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值