s盒替换表如何用matlab求出,[原创]AES中S盒的生成原理与变化

#include 

#include 

#include "MatrixGF2.h"

#include "PolynomialGF2.h"

MatrixGF2 g_mtxPositiveBox(16, 16, 0);

MatrixGF2 g_mtxReverseBox(16, 16, 0);

MatrixGF2 g_mtxBytePositiveTransformMatrix(8, 8, 0);

MatrixGF2 g_mtxByteReverseTransformMatrix(8, 8, 0);

BYTE g_bytPositiveFixed = 0;

BYTE g_bytReverseFixed = 0;

PolynomialGF2 g_polyModle;

#define MAKEBYTE(_high, _low) (((_high) <

PolynomialGF2 PolynomialEuclidEx(const PolynomialGF2 &kref_polyA,

const PolynomialGF2 &kref_polyB,

PolynomialGF2 &ref_polyX,

PolynomialGF2 &ref_polyY)

{

if (kref_polyB.EqualZero())

{

throw std::runtime_error("The polyB is zero!");

}

int iHighestBitIndex = kref_polyA.GetHightestBitIndex();

PolynomialGF2 polyQuotient(iHighestBitIndex + 1, 0);

PolynomialGF2 polyRemainder(iHighestBitIndex + 1, 0);

PolynomialGF2 polyLastLastX(iHighestBitIndex + 1, 0);

polyLastLastX = 1;

PolynomialGF2 polyLastLastY(iHighestBitIndex + 1, 0);

PolynomialGF2 polyLastLastRemainder = kref_polyA;

PolynomialGF2 polyLastX(iHighestBitIndex + 1, 0);

PolynomialGF2 polyLastY(iHighestBitIndex + 1, 0);

polyLastY = 1;

PolynomialGF2 polyLastRemainder = kref_polyB;

ref_polyX.Clear();

ref_polyY.Clear();

ref_polyX.Insert(0, iHighestBitIndex + 1, 0);

ref_polyY.Insert(0, iHighestBitIndex + 1, 0);

ref_polyY = 1;

do

{

polyLastLastRemainder.Division(polyLastRemainder,

polyQuotient,

polyRemainder);

if (polyRemainder.EqualZero())

{

break;

}

ref_polyX = polyLastLastX - polyLastX * polyQuotient;

ref_polyY = polyLastLastY - polyLastY * polyQuotient;

polyLastLastRemainder = polyLastRemainder;

polyLastRemainder = polyRemainder;

polyLastLastX = polyLastX;

polyLastLastY = polyLastY;

polyLastX = ref_polyX;

polyLastY = ref_polyY;

} while (TRUE);

return polyLastRemainder;

} //! PolynomialGF2EuclidEx() END

void InitByteTransformMatrix(PolynomialGF2 &ref_polyInit,

MatrixGF2 &ref_mtxTarget)

{

size_t uiColumnNumber = ref_mtxTarget.GetColumnNumber();

if (ref_polyInit.GetSize() != ref_mtxTarget.GetColumnNumber())

{

ref_polyInit.PaddingZero(uiColumnNumber);

}

size_t uiRowNumber = uiColumnNumber;

for (size_t cntY = 0; cntY 

{

size_t iOffset = cntY;

for (size_t cntX = 0; cntX 

{

size_t iActualPos = cntX + iOffset;

if (iActualPos >= uiColumnNumber)

{

iActualPos -= uiColumnNumber;

}

ref_mtxTarget[cntY][iActualPos] = ref_polyInit[cntX];

}

}

} //! InitByteTransformMatrix() END

void InitPositiveBox()

{

MatrixGF2 mtxFixed = PolynomialGF2(g_bytPositiveFixed).GetDequeFormat();

for (size_t cntY = 0; cntY 

{

for (size_t cntX = 0; cntX 

{

BYTE bytSource = (BYTE)MAKEBYTE(cntY, cntX);

if (0 == bytSource)

{

g_mtxPositiveBox[cntY][cntX] = g_bytPositiveFixed;

continue;

}

PolynomialGF2 polyInverseElement;

PolynomialGF2 polyX;

PolynomialGF2 polySource = bytSource;

// 求乘法逆元

if (!polySource.EqualZero())

{

PolynomialGF2 polyResult =

PolynomialEuclidEx(g_polyModle,

polySource,

polyX,

polyInverseElement);

}

else

{

polyInverseElement = { 0 };

}

polyInverseElement.ClearInvalidZero();

MatrixGF2 mtxValue = polyInverseElement.GetDequeFormat();

mtxValue.PaddingRow(

g_mtxBytePositiveTransformMatrix.GetColumnNumber()

);

mtxFixed.PaddingRow(mtxValue.GetRowNumber());

mtxValue = g_mtxBytePositiveTransformMatrix * mtxValue + mtxFixed;

g_mtxPositiveBox[cntY][cntX] =

(BYTE)PolynomialGF2(mtxValue.Transform2Vector()).ToNumber();

}

}

} //! InitPositiveBox() END

void InitReverseBox()

{

MatrixGF2 mtxFixed = PolynomialGF2(g_bytReverseFixed).GetDequeFormat();

for (size_t cntY = 0; cntY 

{

for (size_t cntX = 0; cntX 

{

BYTE bytSource = (BYTE)MAKEBYTE(cntY, cntX);

MatrixGF2 mtxValue = bytSource;

int iValueColumnNumber =

g_mtxByteReverseTransformMatrix.GetColumnNumber();

if (0 == bytSource)

{

mtxValue.InsertRow(0, iValueColumnNumber, 1, 0);

}

mtxValue.PaddingRow(iValueColumnNumber);

mtxFixed.PaddingRow(mtxValue.GetRowNumber());

mtxValue = g_mtxByteReverseTransformMatrix * mtxValue + mtxFixed;

PolynomialGF2 polyInverseElement;

PolynomialGF2 polyX;

PolynomialGF2 polyValue = mtxValue.Transform2Vector();

if (!polyValue.EqualZero())

{

// 求乘法逆元

PolynomialGF2 polyResult =

PolynomialEuclidEx(g_polyModle,

polyValue,

polyX,

polyInverseElement);

}

else

{

polyInverseElement = { 0 };

}

g_mtxReverseBox[cntY][cntX] = (BYTE)polyInverseElement.ToNumber();

}

}

} //! InitReverseBox() END

void InitStandardBox()

{

g_polyModle = { 1, 1, 0, 1, 1, 0, 0, 0, 1 };

PolynomialGF2 polyPositiveSeed = { 1, 0, 0, 0, 1, 1, 1, 1 };

InitByteTransformMatrix(polyPositiveSeed, g_mtxBytePositiveTransformMatrix);

PolynomialGF2 polyReverseSeed = { 0, 0, 1, 0, 0, 1, 0, 1 };

InitByteTransformMatrix(polyReverseSeed, g_mtxByteReverseTransformMatrix);

g_bytPositiveFixed = 0x63;

g_bytReverseFixed = 0x05;

InitPositiveBox();

InitReverseBox();

printf("Positive box: \n%s\n",

g_mtxPositiveBox.GetWrittenFormat().c_str());

printf("Reverse box: \n%s\n",

g_mtxReverseBox.GetWrittenFormat().c_str());

} //! InitStandardBox() END

int main()

{

InitStandardBox();

system("pause");

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值