圆的相切相交相离公式_圆的完美终结篇

b389e4528eb5489ba745019cb29ce87e.png转载是一种动力 分享是一种美德

8604bcbf8644ba06ca2f2ce968683145.gif

36c94492afb64195b99a0a0484582d47.png

一直以来,

总是热衷于圆锥曲线的总结,

却忽视了对圆锥曲线初始内容,

圆的相关知识的整理。

也可能仅仅是觉得比较简单吧。

但作为圆锥曲线的初始内容,

课堂上,

我其实真的是很重视,

很重视圆的内容教学的。

不过,

应网友的要求,

今天还是决定写个圆的系统知识总结

975501bf120db74aef3b761511914a7b.gif 64983d657b2f1a2b4b47e050b85ccfbd.gif

圆的形状


学了好长时间的椭圆了,

是不是都快忘记圆是什么样了呢?

其实,

圆与椭圆之间的关系是非常简单的,

看看下面这个图,

基本就能很直观的理解了。

275961e36c95327ef280ae15328454c4.gif

你是不是也看出了点什么呢?

原来,

当椭圆两焦点在无限接近的过程中,

椭圆会慢慢变得更圆了。

一直到F1F2=0时,

真的就变成了一个圆。

所以有时也说,

圆是当离心率为0时,

一个特殊的椭圆。

原来,

圆只是椭圆的一个极端情形

15e68464a2fa233e7fb0be776d2a03ee.png

975501bf120db74aef3b761511914a7b.gif 64983d657b2f1a2b4b47e050b85ccfbd.gif

两个要素


除了圆心和半径,

圆还有两个基本要素,

周长和面积。

显然,

圆的大小由它的半径决定,

所以圆的周长与面积,

都是关于半径的表达式。

c6411013711fbe673092cd7c3e1527c8.gif

圆的周长:l=2πr

dfe9bc71a344e3e68e6e0101ec934a76.gif

1

51e17cccb94a873d2e3aadfb6ee760e8.png

圆的面积:S=πr2

b0858000fc20c14d52b30753a7a7a907.gif

你能从图中看出,

为什么圆的面积是πr2么?

其实,

按照动画的思路,

将圆无数次分割再拼接,

是一定能得到一个平行四边形的。

它的底边是半圆展开的长度πr,

高显然便是圆的半径了。

这样的结果,

圆的面积是不是就是πr2呢!

当然,

也不要太过于较真了,

因为这里用到了极限的感觉

如果细究起来,

现在倒也真的是没办法解释的。

975501bf120db74aef3b761511914a7b.gif 64983d657b2f1a2b4b47e050b85ccfbd.gif

三个定义


定义一:


平面内到一定点距离为定值的点的集合。

上面那个,

是圆的静态定义。

但如果看到了下面这个动图,

是不难看出圆的另一个动态的定义的。

定义二:


将线段绕其一个端点旋转360°, 

另一端点的轨迹是圆。

d7a160da75d39430119aff5c8ff86b68.gif

其实,

除了这两个定义之外,

圆还有一个让人难忘的定义。

那当然就是,

最好用的阿氏圆,

全称“阿波罗尼斯圆”了。

9b2dd033fe452ea97ae6d2f40863a64b.gif

从动图不难看出,

在点P移动的过程中,

|PA|、|PB|的长度虽然都在不断变化,

但它们的比值却总是不变的。

定义三:


平面内到两定点的距离之比为定值(定值不为1)

的点的轨迹叫作圆。

这里的圆,

便是中考热点、高考难点的阿氏圆了。

有兴趣的同学或老师,

可以翻翻公众号里的这一篇:

圆来如此,阿氏圆的深度学习”

(点击链接可查看)

典例解析:


23879ea756007ed393a261464e4e5957.png

ef706c9f67d421bf736f9c0eaf3ab069.png

686159203456dfab1829ab87d013a37c.png

根据阿氏圆特征,

阿氏圆的圆以必在线段BC延长线上。

既然都确实了满足条件的轨迹是圆,

当然是可以考虑取特殊位置的。

我在线段BC及延长线上,

分别取了点M、N,

且都满足|BM|=3|MC|,|BN|=3|NC|

那么再以MN为直径作圆,

便一定是阿氏圆了。

你能理解吗?

975501bf120db74aef3b761511914a7b.gif 64983d657b2f1a2b4b47e050b85ccfbd.gif

四个方程


根据已知条件特征的不同,

在求圆的方程时,

常有四种不同的表达方式。

标准式:


如果已知了圆心和半径,常用标准式来表示。

(x-a)2+(y-b)2=R2

一般式:


如果已知圆上的几个点,常用一般式来表示。

x2+y2+Dx+Ey+F=0

直径式:


如果已知直径的两个端点,常用直径式表示。

(x-x1)(x-x2)+(y-y1)(y-y2)=0

参数式:

40890e78a0cf07c142cde95b5a32d9ab.png

圆系方程:


经过直线与圆交点的圆:

x2+y2+Dx+Ey+F+λ(ax+by+c)=0

经过两圆交点的圆:

x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0

典例解析:


723b9030b53446bcaadfa3847380e716.png2cdcece5526d099c1fd2faf19927aa91.png5105f698452ae26b4c1abc9967788fa3.png

8ef1ebc47a03fed6a161a0875ff16301.png

0f82b92fdb8d3cf71f3f6e04f5e152c3.png

特别说明:

根据需要,

有时是可以将点看成一个以0为半径的圆的。

所以,

第三种思路,

你是不是真的也能理解呢?

975501bf120db74aef3b761511914a7b.gif 64983d657b2f1a2b4b47e050b85ccfbd.gif

切线相关


切线定义:


如果一条直线与圆只有一个交点,则称直线与圆是相切的,这条直线叫圆的一条切线。

切线性质:


圆的任意一条切线均垂直于切点与圆心连线。

836049f6434a0b16c56dfbdaa4e0633d.gif

切线长:


①切线长定义:

过圆外一点向圆引切线,切点与该点之间的距离,

称为切线长。

4d1ff188c669bf2a3f673d12fcc878df.png

②切线长度:

e306699ef78839a2db62756bf7996eeb.png

切线方程:


①求过圆上一点P(x0,y0)的圆的切线方程:

    先求切点与圆心连线斜率k.

 若k不存在,

    由图形直接写出切线方程:y=y0

❷ 若k=0,

    由图直接写出切线方程:x=x0

 其它:

     由垂直关系得切线斜率,由点斜率式写切线

     方程。 或者根据直线与圆的交点个数,用

     待定系数法。

客观题,

一定是可以直接用下面结论的:

将平方项及一次项分别改写得切线方程。

改写标准:平方改成积,一次方改成平均数。

03e90651700c27d9f059318859320c12.png

特别说明(圆的极点极线)


按照以上方式改写,所得直线几何意义为:

若点P在圆上:直线为切线

②若点P在圆外:直线为切点弦所在直线;

③若点P在圆内:直线为过该点的弦端点处切线

                             交点轨迹。

2de3f00f6d504cc252bae04b1bc10a4a.gif

典例解析:


bada068ce7f77f1ae3f295c822722672.png16e3b51c25b8251779e9690e9d05968c.png62b7ad2bf56ed8f7dd19fe96ed0690cb.png25530d35b7ba44c48c5f06f1cd2fcdd7.png5466f4c5f2ecb093135787fe650deadb.pngcc2ed85e28243c6c3149a4afbd355304.png

其实,

从上面的解法不难看出,

解析几何毕竟首先是几何,

所以解题思路的分析,

首先还是要从,

几何图形或几何性质上着手,

这样可以在一定程度上优化计算过程。

当然,

代数法虽然计算量很大,

但因为思路简洁,

也不失为一种比较理想的解法的。

1

51e17cccb94a873d2e3aadfb6ee760e8.png

②求过圆外一点P(x0,y0)的圆的切线方程

几何法:当斜率存在时,

     设直线方程为:y=k(x-x0)+y0

                     由圆心到直线距离等于半径求得k值,

                  从而求出切线方程。

 代数法:当斜率存在时,

        设直线方程为:y=k(x-x0)+y0

                       代入圆的方程,得到关于x的一

                    元二次方程,再由Δ=0,求得

                    切线的斜率及方程。

 典例解析:


c37a4350ea43f55089a6f553126e5cd5.png

975501bf120db74aef3b761511914a7b.gif 64983d657b2f1a2b4b47e050b85ccfbd.gif

弦长相关


弦的定义:


圆周上任意两点的连线段,称为圆的一条弦。

垂径定理:


弦的中点与圆心的连线垂直平分弦。

弦长计算:


①代数法:

a4e419fcd1b641133b9de9381dcdc0af.png

②几何法:

7d59bb5e8f593458d8e77cc5cfe6b8ec.png

弦的最值:


过圆内一点,作圆的弦

1e300fdd22ebb1d4ed2fc2df865abcf2.gif

此时,从图中可以看出:

①最长弦为直径。

②最短弦为垂直于该直径的弦。

975501bf120db74aef3b761511914a7b.gif 64983d657b2f1a2b4b47e050b85ccfbd.gif

位置关系

直线与圆

相离

圆心到直线距离大于半径

方程组无解

相交

圆心到直线距离小于半径

方程组有

两组不同解

相切

圆心到直线距离等于半径

方程组有

两组相同解

圆与圆

相离

圆心距大于半径之和

方程组无解

相交

圆心距小于半径之和

大于半径之差

方程组有

两组不同解

相切

圆心距等于半径之和

或半径之差

圆方程组有

两组相同解

典例解析:


66735a32cf9230100551b1e07b30811e.png

bdd3deaa01c1b74c960b2de57a1720f9.gif

9cd257e3d164680526b2a86c96fd27a0.png

975501bf120db74aef3b761511914a7b.gif 64983d657b2f1a2b4b47e050b85ccfbd.gif

角 相 关


①直径所对的圆周长为90°;


ba489daf1cd9e5603b4fd896665ec36f.png

∠BPA=90°

②内接四边形对角互补,

    任意外角等于其所对内对角;


c3ae82c4c119d2a0b814b55f537172ff.png

∠BAD+∠BCD=180°

③同弦或等弦所对圆周角相等,

    圆心角是圆周角的二倍;


643a48b2a8922e61b1cff0fea7d783a1.png

∠AMB=∠ANB,∠AOB=2∠ANB

④弦切角等于弦所对圆周角。

3b1be2a9c779b5eb171dd1e94123db60.png

∠APN=∠PMN

975501bf120db74aef3b761511914a7b.gif 64983d657b2f1a2b4b47e050b85ccfbd.gif

几个定理


相交弦定理:


|AM|·|BM|=|CM|·|DM|

4d3a6b03b40b1ef6bd1f2defd1d095a9.png

切割线定理:


|PA|2=|PB|·|PC|

4cd662349b8f572cca6e4f7701dec398.png

割线定理:


|PA|·|PD|=|PB|·|PC|

1f93167cb9c4aa889f3b39f289faface.png

典例解析:


a7e8d00c5218d5995658a03d941d3075.png

4f06f775d0ce5656ac722774c74399c3.gif

fa8d4eb12fb9de256c8254a34c3bf0bc.png

5ea2efdae7e751f2bd7649c5a7f920d9.gif

65c6ef258f540921b78c5e72cff35621.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值