正交设计 python算法_SPSS统计分析案例:无空白列重复正交试验设计方差分析

本文介绍了一种特殊形式的正交试验设计——无空白列重复正交设计,以制药厂提高胃蛋白酶生产效率的优化问题为例,详细阐述了如何使用SPSS进行数据录入和方差分析。分析结果显示,水解温度、水解时间、加盐量和烘房温度四个因素均对生产效率有极显著影响,最优工艺组合为A3B3C2D1。同时,文章指出水解时间和加盐量可能存在与其他因素的交互作用,留待进一步探讨。
摘要由CSDN通过智能技术生成

前面有讲过 SPSS正交试验设计及其方差分析 一篇文章,包含了一个典型的正交试验案例。然而在实际应用当中,主观客观条件复杂多变,在试验设计中就要求能够灵活控制影响因素和水平的个数,以及试验的次数。

正交设计招数虽只有一招,但却变化多端,有多重不同应用方式,无空白列重复正交设计就是其中的一个变式。

案例数据

某制药厂主要生产胃蛋白酶,为了提高生产效率,拟从生产工艺上进行优化改进,你被要求负责该项目。根据多年的生产经验,你认为影响生产效率的因素主要包括A水解温度,B水解时间,C加盐量,D烘房温度,根据目前现有的生产条件,这几个因素能调整的参数大概只有三个水平,以残留蛋白作为质量指标,你决定通过正交试验来解决当前的问题。

数据来源:《SPSS13在空白列正交试验设计及其数据处理中的应用》

选择正交表

各因素只能调整3个水平,主要有4个因素,因此最先考虑到选用L9(34)的四因素三水平正交表,由于参数水平客观条件的限制,L16(45)正交表可以不用考虑了。

选定L9(34)正交表,遇到一个问题:因素排满,没有空白列用于统计实验误差,怎么呢?所以必须通过重复试验来统计实验误差,你决定每个组合方案重复3次。因此,本实验最终需要27次,将得到27组数据。

SPSS正交试验数据录入格式

网上有不少同学提到这个问题,其实数据结果组织形式和无重复试验的格式是一样的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值