当公式或文字展示不完全时,记得向左←滑动哦!
摘要:本节主要介绍行列式中范德蒙行列式的问题,是我们学习行列式中必不可少的一个环节,请大家务必要重视.
定义1:形如行列式
称为 级范德蒙行列式.(详见北大课本80页)
例1.计算阶行列式
解:对于行列式而言,先加边,即
因为题目中含有范德蒙行列式的形式,所以我们将行列式的最后一列加到前面的每一列即可得:
再做
次相邻列对换可得:对于行列式进行转置,即
接下来提取每行的公因子,即
岩宝小总结:当遇见形如范德蒙行列式形式时,一般都要想办法构造到范德蒙行列式的形式进行计算,这是大家容易忽略的,大家一定要记得这个例题的做法哦.
例2.(2020华南理工大学)计算n+1阶行列式
解:
例3.(2020兰州大学)计算阶行列式
解:
我们对于上式最后的行列式利用拆分法进行拆分,即
例4.计算行列式
解:首先我们利用公式
将原行列式元素约掉分母可得
将上式拆分,即
下面我们介绍一类类似于范德蒙行列式,称为缺项范德蒙,我们需要给行列式加某行或者某列才能得到我们想要求的行列式:
例5.计算下列行列式
解:注意这个行列式和范德蒙行列式的区别在于它们的最后一列.现添上一行一列使之成为范德蒙行列式,在确定的系数即可解出答案.即
则有
因此的系数是
而中元素的代数余子式为,因此


留言评论区
点亮 ,告诉大家你也在看