java 实时排行榜_Java游戏服务器-百万规模实时排行榜实现

本文介绍了如何使用Java实现一个支持百万玩家的实时战力排行榜系统。通过采用树形分区设计,时间复杂度达到O(log(n)),空间消耗低。在解决战力相同的情况和获取前N名的问题上,文章提出利用玩家ID作为创建时间,并建立双向链表来维护叶子节点,从而高效地获取排名和前N名玩家信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



有人的地方就有对比,游戏中自然也少不了排行榜。

当前项目设计目标是,每个服务器玩家数量为百万左右。每个玩家都有战力、经验等属性,战力最大值在50万以内。

现在期望能有战力排行榜,有以下几点需求:

全部角色参与排行,能实时知道某个角色的排名

排行榜显示前100名玩家详情

排名规则是战力越高排名越前,战力相同则比较经验,经验再相同则比较创建时间。

排行榜算法并不少见,这篇文章介绍的就不错。根据上述需求分析,最适合采用文中的算法3,即树形分区设计,具体算法文中有详细介绍。

采用该算法,时间复杂度在O(log(n)),在百万规模下空间消耗也就几十M。但有两个问题待解决:

战力相同时如何确定具体排名

如何获得TOP N

针对问题1,假定游戏设计的战力相对均匀(尽管高战力显然更分散),那么战力相同的玩家数量会在一个较小规模内。依然以战力构建排行树,相同战力为同一个节点。节点可以存在一个有序列表,以经验、创建时间排序。这里有个小技巧,以玩家ID等效于创建时间,就直接记录了相应玩家,同时也保证了唯一性。这在增加删除(排名改变时)尤为有用。

针对问题2,排行树算法决定了最终战力节点都是叶子节点,同时在叶子节点层,战力总是从左向右递增的。在树构建过程中,可以分别使用一个前向和后向节点,将所有叶子节点连成一个双向链表。这样就可以做到既能得到前N名,也可以得到后N名,时间复杂度都是O(N)。

下面show the code,完整代码请参看文末。

public class LeaderboardTree{

class LeaderboardNode{

public int lowerKey = 0;

public int upperKey = 0;

public int number = 0;

public ArrayList extraList = new ArrayList();

public LeaderboardNode left = null;

public LeaderboardNode right = null;

public LeaderboardNode prev = null;

public LeaderboardNode next = null;

}

LeaderboardNode root = null;

LeaderboardNode head = null;

LeaderboardNode tail = null;

public void setup(int lowerKey, int upperKey){

root = setupNode(root, lowerKey, upperKey);

}

public void insert(int score, Extra extra){

insertIntoNode(root, score, extra);

}

public void remove(int score, Extra extra){

removeFromNode(root, score, extra);

}

public void change(int oldKey, int newKey, Extra extra){

remove(oldKey, extra);

insert(newKey, extra);

}

public int getRanking(int score, Extra extra){

return getRankingOfNode(root, score, extra) + 1;

}

public ArrayList getTopN(int n){

ArrayList dataList = new ArrayList();

int count = 0;

LeaderboardNode cursor = tail;

while (cursor != null) {

for (Extra extra : cursor.extraList) {

LeaderboardData data = new LeaderboardData();

data.ranking = ++count;

data.key = cursor.lowerKey;

data.extra = extra;

dataList.add(data);

if (count >= n) {

return dataList;

}

}

cursor = cursor.prev;

}

return dataList;

}

private LeaderboardNode setupNode(LeaderboardNode node, int lowerKey, int upperKey){

if (lowerKey > upperKey) {

return null;

}

node = new LeaderboardNode();

node.lowerKey = lowerKey;

node.upperKey = upperKey;

node.number = 0;

node.extraList.clear();

if (isLeafNode(node)) {

if (head == null) {

head = node;

}

if (tail != null) {

tail.next = node;

node.prev = tail;

}

tail = node;

return node;

}

if (upperKey > lowerKey) {

final int middleKey = getMiddleKey(lowerKey, upperKey);

node.left = setupNode(node.left, lowerKey, middleKey);

node.right = setupNode(node.right, middleKey + 1, upperKey);

}

return node;

}

private void insertIntoNode(LeaderboardNode node, int score, Extra extra){

if (node == null) {

return;

}

if (!isInsideNode(node, score)) {

return;

}

++node.number;

if (isLeafNode(node)) {

node.extraList.add(extra);

node.extraList.sort((Extra left, Extra right) -> left.compareTo(right));

return;

}

final int middleKey = getMiddleKey(node.lowerKey, node.upperKey);

if (score <= middleKey) {

insertIntoNode(node.left, score, extra);

} else {

insertIntoNode(node.right, score, extra);

}

}

private void removeFromNode(LeaderboardNode node, int score, Extra extra){

if (node == null) {

return;

}

if (!isInsideNode(node, score)) {

return;

}

--node.number;

if (isLeafNode(node)) {

node.extraList.remove(extra);

node.extraList.sort((Extra left, Extra right) -> left.compareTo(right));

return;

}

final int middleKey = getMiddleKey(node.lowerKey, node.upperKey);

if (score <= middleKey) {

removeFromNode(node.left, score, extra);

} else {

removeFromNode(node.right, score, extra);

}

}

private int getRankingOfNode(LeaderboardNode node, int score, Extra extra){

int ranking = 0;

if (node == null) {

return ranking;

}

if (score < node.lowerKey) {

ranking += node.number;

return ranking;

}

if (score > node.upperKey) {

ranking += 0;

return ranking;

}

if (isLeafNode(node)) {

ranking += Math.max(node.extraList.indexOf(extra), 0);

return ranking;

}

final int middleKey = getMiddleKey(node.lowerKey, node.upperKey);

if (score <= middleKey) {

ranking += node.right != null ? node.right.number : 0;

ranking += getRankingOfNode(node.left, score, extra);

} else {

ranking += getRankingOfNode(node.right, score, extra);

}

return ranking;

}

private int getMiddleKey(int lowerKey, int upperKey){

final int middleKey = lowerKey + ((upperKey - lowerKey) >> 1);

return middleKey;

}

private boolean isInsideNode(LeaderboardNode node, int score){

return score >= node.lowerKey && score <= node.upperKey;

}

private boolean isLeafNode(LeaderboardNode node){

return node.lowerKey == node.upperKey;

}

}

针对我们的需求,key就是战力,extra包含玩家经验和ID。

采用这种做法,需要在服务器启动时重新构建排行树,先确定排行战力区间,然后依次插入每个玩家战力等数据。运行期间,玩家战力等改变时,先删除旧的排行,再插入新的排行。

该算法在处理千万数据时依然有效,但再大规模性能会不足,占用空间也可观。如果战力分布不均,同战力玩家过多,性能也会大幅退化,可将ArrayList替换为更高效的数据结构,或变通需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值