weka使用训练集分类测试集_Weka机器学习使用介绍(数据+算法+实战)

本文介绍了Weka这一开源数据挖掘软件的使用,包括数据读取、预处理(如归一化、特征选择)、以及使用J48决策树进行分类的实战。通过4折交叉验证展示了决策树的分类效果,并提供了如何可视化决策树的步骤。
摘要由CSDN通过智能技术生成

Weka机器学习使用介绍(数据+算法+实战)

Weka是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis)的英文字首缩写,新西兰怀卡托大学用Java开发的数据挖掘著名开源软件。功能有数据处理、特征选择、分类、回归、可视化等,支持多种数据文件格式,如arff、xrff、csv等,主流的数据格式是csv和arff。

本文将利用一个csv数据对Weka的使用过程进行简单的介绍,并采用其中一种机器学习算法决策树进行实战,其他的一些机器学习算法在机器学习专辑里都有介绍。

机器学习算法专辑

一、 Weka介绍
下载链接:https://waikato.github.io/weka-wiki/downloading_weka/,里面有windows、mac os和linux等平台版本。
Weka的主页面窗口有四个模块:

  1. Explorer:进行数据的特征选择、分类、回归、聚类、关联规则、数据可视化等功能,口语进行不同的实验对比不同算法的结果。

  2. Experimenter:使用增量式的算法处理大型数据集,对不同学习方案进行数据测试。

  3. KnowledgeFlow:通过拖拽的方式建立实验方案,与Explorer相似。

  4. Workbench:

  5. Simple CLI:命令行界面,用于和用户进行交互。
    下面的实战我们以Explorer为例

6831478deae27504568f1b2e3412e837.png

二、 数据读取和数据预处理
我们在获取的数据文件一般来说第一列都是ID或Name,中间的一些列是对应的特征种类,最后一列是每一行ID的标签class,首先删掉ID列,并且确保class的取值为0或1。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值