背景简介
随着人工智能技术的快速发展,其在商业应用中的潜力日益凸显。然而,开发和部署生成性人工智能(Gen AI)系统绝非易事,涉及多个层面的挑战。本章深入探讨了Gen AI技术栈的主要组成部分以及组织在实施Gen AI项目时面临的各种挑战。通过介绍系统的硬件要求、云平台依赖、基础模型的使用、数据存储、模型部署、应用开发、模型共享和管理等关键要素,本章为读者提供了一个全面的Gen AI技术概览。
GenAI技术栈的主要组成部分
在构建Gen AI系统时,有多个关键组件需要考虑:
计算机硬件
使用专门的半导体芯片,如Nvidia的GPU和Google的TPU,以加速模型的训练和推理。
云平台
利用亚马逊网络服务(AWS)、微软Azure和谷歌云平台(GCP)等云计算基础设施,来开发和托管Gen AI应用。
封闭源和开源基础模型
例如,OpenAI的GPT等大规模预训练模型,这些模型通常通过API访问,并分为封闭源和开源两种类型。
数据库与部署
数据库用于存储向量嵌入,如Pinecone;部署平台则用于将Gen AI模型实际部署,如Clarifai。
应用与模型中心
端到端垂直应用直接面向最终用户,而模型中心如Hugging Face则用于模型的分享和托管。
观测性与编排
系统和框架用于获得AI系统操作的可见性,并协调不同工具和系统的工作流程。
GenAI操作的关键挑战
在组织中实施Gen AI项目时,需要考虑的关键挑战包括:
数据的合规性与质量
组织必须确保训练模型的数据来源合法、不含版权内容、敏感信息和个体识别信息。
模型的局限性与风险
评估模型的限制和相关风险,以及模型性能的基准和透明度。
部署与监管遵从性
模型部署的环境需要符合监管要求,并提供适当文档以满足审计和法规标准。
实用建议与下一步行动
实施验证和监督
建立框架以持续验证和监控AI输出,确保准确性与可靠性,并及时解决道德问题。
安全性与法规遵从性
强化网络安全基础设施,对AI引入的新漏洞进行防范,并保持对AI法规的了解与遵循。
组织适应与技能发展
鼓励持续学习和适应的文化,并投资于提升和再培训计划,以确保劳动力适应AI增强的未来。
总结与启发
通过本章的学习,我们认识到构建和运营Gen AI系统是一个复杂的过程,它不仅需要技术专长,还需要对数据的严格管理和对法律法规的深入理解。组织必须持续投资于人才培养和技术创新,并确保在提高生产力的同时,维护道德标准和合规性。面对这一领域日新月异的变化,组织需要具备前瞻性和适应性,以便在安全和效率之间找到最佳平衡点。