问题描述
有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?
输入格式
第一行包含一个整数 n 。
接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。
接下来一共 n-1 行,每行描述树上的一条边。
输出格式
输出一个整数,代表选出的点的权值和的最大值。
样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5
样例输出
12
样例说明
选择3、4、5号点,权值和为 3+4+5 = 12 。
数据规模与约定
对于20%的数据, n <= 20。
对于50%的数据, n <= 1000。
对于100%的数据, n <= 100000。
权值均为不超过1000的正整数。
2 解决方案
本题主要考查动态规划法,核心在于如何构造状态转移方程。
引用参考资料2中讲解:
DP, 用dp[i][0]表示不选择i点时,i点及其子树能选出的最大权值,dp[i][1]表示选择i点时,i点及其子树的最大权值。
状态转移方程:
对于叶子节点 dp[k][0] = 0, dp[k][1] = k点权值
对于非叶子节点i,
dp[i][0] = ∑max(dp[j][0], dp[j][1]) (j是i的儿子)
dp[i][1] = i点权值 + ∑dp[j][0] (j是i的儿子)
最大权值即为max(dp[0][0], dp[0][1])
下面的代码最终运行评分为50分,具体原因:运行超时。
import java.util.Scanner;
public class Main {
public int[][] dp = new int[100002][2];
public int[][] tree = new int[100002][300]; //tree[i][3] = num表示第i个节点的第3个孩子节点为第num个节点
/*
* 参数point1:表示输入的第point1个节点,不是节点权值
* 参数point2:表示输入的第point2的节点,不是节点权值
* 说明:由于题目仅仅给出边的说明,并未说明两个节点谁是父母节点,所以以下有两种情形
*/
public void creatTree(int point1, int point2) {
int i = 0;
//当第point1个节点为父母节点时
while(tree[point1][i] != 0) i++; //如果第point1个节点已经有孩子了,再增加一个孩子
tree[point1][i] = point2;
int j = 0;
//当第point2个节点为父母节点时
while(tree[point2][j] != 0) j++;
tree[point2][j] = point1;
}
/*
* 参数satrt:开始对树进行DFS遍历的开始节点,为具体节点位置,不是节点权值
* 参数root:为第start个节点的直接父母节点位置,root = 0表示根节点的父母节点
*/
public void dfs(int start, int root) {
int child = tree[start][0]; //第start个节点的第1个孩子节点
for(int i = 0;child != 0;i++) {
child = tree[start][i];
if(child != root) { //防止出现start的孩子成为start的父亲情况
dfs(child, start);
dp[start][1] += dp[child][0]; //当第child个节点没有孩子节点时,开始回溯
dp[start][0] += (dp[child][1] > dp[child][0] ? dp[child][1] : dp[child][0]);
}
}
}
public static void main(String[] args) {
Main test = new Main();
Scanner in = new Scanner(System.in);
int n = in.nextInt();
for(int i = 0;i < n;i++)
test.dp[i + 1][1] = in.nextInt();
for(int i = 0;i < n - 1;i++) {
int point1 = in.nextInt();
int point2 = in.nextInt();
test.creatTree(point1, point2);
}
test.dfs(1, 0); //从创建的数的根节点(即第1个顶点,0表示根节点的父母节点)开始进行DFS遍历
int max = (test.dp[1][1] > test.dp[1][0] ? test.dp[1][1] : test.dp[1][0]);
System.out.println(max);
}
}
标签:结点,java,int,child,蓝桥,start,权值,节点,dp
来源: https://blog.csdn.net/a1439775520/article/details/96905047