java矩阵连乘算法_矩阵连乘(java实现)

Loading...

*矩阵连乘(java实现)*

**一、问题描述与分析**

问题:给定n个矩阵:A1,A2,...,An,其中Ai与Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。

分析:由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。

完全加括号的矩阵连乘积可递归地定义为:

(1)单个矩阵是完全加括号的;

(2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)

例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。

**二、程序实现**

```java

import java.util.Scanner;

public class Matrix {

public static int n;

public static int[] p;

public static int[][] m;

public static int[][] s;

public static void main(String[] args)

{

Scanner in = new Scanner(System.in);

System.out.println("请输入矩阵的个数:");

n = in.nextInt();

System.out.println("请输入矩阵的行数和列数:");

p = new int[n+1];

for(int i = 0;i <= n;i++)

{

p[i] = in.nextInt();

}

m = new int[n+1][n+1];

s = new int[n+1][n+1];

matrixChain(p,n,m,s);

System.out.println("矩阵连乘的最小次数是:" + m[1][n]);

System.out.println("矩阵的连乘次序:");

Traceback(1,n,s);

}

public static void Traceback(int i,int j,int[][] s)//递归构造最优解

{

if(i == j)

{

return ;

}

Traceback(i,s[i][j],s);

Traceback(s[i][j]+1,j,s);

System.out.println("Multiply A" + i + "," + s[i][j] + "and A" + (s[i][j]+1) + "," + j);

}

public static void matrixChain(int p[],int n,int[][] m,int[][] s)

{

for(int i = 1;i <= n;i++)//初始化,矩阵长度为1时,从i到i的矩阵连乘子问题只有一个矩阵,操作次数是0

{

m[i][i] = 0;

}

for(int r = 2;r <= n;r++)//矩阵的的长度,从长度2开始逐渐边长。

{

for(int i = 1;i <= n-r+1;i++)//从第i个矩阵开始,长度为r,则矩阵为(Ai-A(i+r-1))

{

int j = i+r-1;

m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j];

s[i][j] = i;//断开点的索引

for(int k = i+1;k < j;k++)//k从i+1循环找m[i][j]的最小值

{

int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];

if(t < m[i][j])//找到比原来的断开点更小的值

{

m[i][j] = t;

s[i][j] = k;//最小值的断开点

}

}

}

}

}

}

```

**三、实验结果与分析**

实验结果:

![结果][1]

实验分析:

思路:

设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]。

当i=j时,A[i:j]=Ai,因此,m[i][i]=0,i=1,2,…,n

当i

递推关系如下:$$m[i,j]=\begin{cases}0,i=j\\\min_{i

若将对应m[i][j]的断开位置k记为s[i][j],在计算出最优值m[i][j]后,可递归地由s[i][j]构造出相应的最优解。s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在矩阵Ak和Ak+1之间断开,即最优的加括号方式应为(A[i:k])(A[k+1:j)。因此,从s[1][n]记录的信息可知计算A[1:n]的最优加括号方式为(A[1:s[1][n]])(A[s[1][n]+1:n]),进一步递推,A[1:s[1][n]]的最优加括号方式为(A[1:s[1][s[1][n]]])(A[s[1][s[1][n]]+1:s[1][s[1][n]]])。同理可以确定A[s[1][n]+1:n]的最优加括号方式在s[s[1][n]+1][n]处断开...照此递推下去,最终就可以确定A[1:n]的最优完全加括号方式,及构造出问题的一个最优解。

[1]: https://img.xiaowuyike.com/images/2020/07/06/juvflmigjpgo.md.png

最后修改:2020 年 07 月 06 日 06 : 27 PM

© 允许规范转载

赞赏

如果觉得对你有用,请随意赞赏

×Close

赞赏作者

扫一扫支付

支付宝支付

微信支付

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值