动态规划矩阵链乘法matlab,动态规划 - 矩阵链的乘法问题

这里用矩阵链的乘法问题来说明动态规划算法的设计要素。

\(A_1,A_2,..,A_n\)表示\(n\)个矩阵的序列,其中\(A_i\)为\(P_{i-1} \times P_i\)阶矩阵,\(i=1,2,...,n\)。

向量\(P=\)表示矩阵链的输入,其中\(P_0\)是\(A_1\)的行数,\(P_1\)是\(A_1\)的列数,\(P_1\)是\(A_2\)的行数,以此类推。

计算这个矩阵需要做\(n-1\)次两个矩阵的相乘运算,可以用\(n-1\)对括号表示运算次序。

因为矩阵乘法满足结合律,所以无论采用那种顺序,最后结果都一样,但是采用不同的顺序计算的工作量不同。如何定义两个矩阵相乘的工作量呢?

所以假设\(A_1\)有\(i\)行\(k\)列,\(A_2\)有\(k\)行\(j\)列。所以\(A_1\)\(A_2\)相乘后的矩阵有\(i\)行\(j\)列,含\(ij\)个元素。

以元素相乘作为基本运算,乘积中每个元素的计算都需要做j次乘法,于是计算\(A_1A_2\)总共需要\(ijk\)次乘法。

1.1具体实例

假设输入的是\(P=<10,100,5,50>\),说明有\(3\)个矩阵相乘。其中,

\(A_1:10 \times 100\)

\(A_2:100\times 50\)

\(A_3:5 \times50\)

有两种乘法次序:

\((A_1A_2)A_3\)

\(A_1(A_2A_3)\)

执行第一种运算的基本运算次序:\(10 \times 100\times5 + 10 \times 5 \times 50=7500\)

执行第二种运算的基本运算次序:\(10 \times 100\times50 + 100 \times 5 \times 50=75000\)

工作量相差达10倍!

所以我们的问题是:给定向量P,确定一种乘法次序,使得基本运算的总次数最少。

蛮力算法时间复杂度太大,这里先不讨论。

我们尝试用动态规划算法,从子问题的划分,递归方程的确定,递归和迭代的实现方法,复杂度分析等方面介绍动态规划算法。

1.2子问题的划分和递推方程

我们的优化目标是:基本运算次数的最小化。

如何界定子问题的边界? 令\(A_i..n\)表示输入的矩阵链。

如果从前向后划分,得\(A_{1..i}\),i=1,2,...,n,得到的子问题只有后边界。但是在计算子问题\(A_{1..j}\),j>i时,我们不仅需要知道子问题\(A_{1..i}\),也得知道\(A_{i+1..j}\)的信息。

这说明子问题的划分需要前后两个边界。

用\(A_i..j\)定义矩阵链\(A_i,A_{i+1},..,A_j\)相乘的子问题,\(m[i,j]\)表示得到乘积\(A_{i..j}\)所用到的最小基本运算次数。

假定最后一次乘积发生在矩阵链\(A_{i..k}\)和\(A_k+1..j\)之间,即

\(A_iA_{i+1}..A_j=(A_iA_{i+1}..A_k)(A_{k+1}A_{k+2}..A_j)\)

\(k=i,i+1,...,j-1\)

所以子问题\(A_i..j\)的计算依赖于子问题\(A_i..A_k\)和\(A_{k+1}..A_j\)的计算结果。

即\(m[i,j]\)依赖于\(m[i,k]\)和\(m[k+1,j]\)的值。

cf08c81590ec8ca780696098b3fb4719.gif

k代表子问题的划分问题,考虑所有可能的划分,\(i<=k<=j\),从中比较出最小的值。

\(P_{i-1}P_kP_j\)是最后把两个子矩阵链\(A_{i..k}\)和\(A_{k+1}..j\)的结果矩阵相乘所做的基本运算次数。

当\(i=j\)时,矩阵链只有一个矩阵\(A_i\),这时乘法次数是\(0\),对应了递推式的初值。

所以这个问题是满足优化原则的。因为当\(m[i,j]\)达到最小值时,子问题的优化函数值\(m[i,k]\)和\(m[k+1,j]\)也是最小的。

2.动态规划算法的递归实现

为了确定每次相乘时加括号的位置,需要设计表\(s[i,j]\)记录\(m[i,j]\)达到最小值时k的划分位置。

算法RecurMatrixChain(P,i,j)

输入:矩阵链\(A_i..j\)的输入为向量\(P=\),其中\(i<=k<=j\)

输出:计算\(A_{i..j}\)的所需最小乘法次数\(m[i,j]\)和最后一次运算的位置\(s[i,j]\)

if i=j

then m[i,j]

m[i,j]

s[i,j]

for k

q

if q < m[i,j]

then m[i,j]

s[i,j]

return m[i,j]

求解n个矩阵相乘,只需代入i=1,j=n。

下面考虑时间复杂度

cf08c81590ec8ca780696098b3fb4719.gif

算法在行5执行for循环,k从1到n-1。

每次进入循环体都在行6进行两个子问题的递归求解,其余工作量都是常数时间。

化简得:

cf08c81590ec8ca780696098b3fb4719.gif

现在介绍一个定理:当\(n>1\)时,$T(n)= \Omega(2^{n-1}) \( 证明:\)n=2,T(2)>=C=C_12^{n-1},C_1=C/2\(为某个正数 假设对于任何小于n大于等于2的k,\)T(k)>=C_12{k-1}$,则存在某个常数$C’$,使得

cf08c81590ec8ca780696098b3fb4719.gif

可以看到,通过使用了动态规划的设计思想,相比于蛮力算法,时间复杂度有所改善,但是并没有得到多项式时间的高效算法。为什么?

以矩阵链\(A_{1..5}\)为例:

cf08c81590ec8ca780696098b3fb4719.gif

时间复杂度高的原因:在递归调用中同一个子问题被多次重复计算。

在整个递归计算中总计产生了\(1+8+24+32+16=81\)个子问题。

规模为1的子问题有5个,以此类推,得到不同的子问题个数只有\(5+4+3+2+1=15\)个

说明算法计算的81个子问题中有许多是重复的。

3.动态规划算法的迭代实现

迭代计算的关键

每个子问题只计算一遍

迭代过程

从最小子问题开始

考虑计算顺序,以保证后面用到的值前面已经计算好

存储结构保存计算结果--备忘录(存储子问题的优化函数值和划分边界)

解的追踪

设计标记函数标记每步的决策

考虑根据标记函数追踪解的算法

cf08c81590ec8ca780696098b3fb4719.gif

\(r\)为链长

算法MatrixChain(P,n)

输入:矩阵链\(A_{1..n}\)的输入向量\(P=\)

输出:计算\(A_{i..j}\)的所需最小乘法次数\(m[i,j]\)和最后一次运算的位置\(s[i,j]\)

令所有的m[i,j]得初值为0

for r

for i

j

m[i,j]

s[i,j]

for k

t

if t

then m[i,j]

s[i,j]

时间复杂度:

行2,3,7都是\(O(n)\),嵌套循环执行\(O(n^3)\)次,内部为\(O(1)\),\(W(n)=O(n^3)\)

cf08c81590ec8ca780696098b3fb4719.gif

cf08c81590ec8ca780696098b3fb4719.gif

解的追踪:

\(S[1,5]=3 => (A_1A_2A_3)(A_4A_5)\)

\(S[1,3]=1 => A_1(A_2A_3)\)

输出:

计算顺序:\((A_1(A_2A_3))(A_4A_5)\)

最少的乘法次序:\(m[1,5]=11875\)

两种比较的实现:

递归实现:时间复杂度高,空间少

迭代实现:时间复杂度低,空间消耗多

原因:递归实现子问题多次重复计算,子问题计算次数呈指数增长。迭代实现每个子问题只计算一遍。

动态规划时间复杂度:

备忘录各项计算量之和+追踪解的工作量

通常追踪解的工作量不超过计算工作量,是问题规模的多项式函数

4.动态规划算法的要素:

划分子问题,确定子问题边界,将问题求解变成多步判断的过程。

定义优化函数,以该函数极大(或极小)值作为依据,确定是否满足优化原则。

列优化函数的递推方程和边界条件。

自底向上计算,设计备忘录(表格)。

考虑是否需要设立标记函数。cf08c81590ec8ca780696098b3fb4719.gif

扫码关注我们

微信号:SRE实战

拒绝背锅 运筹帷幄

×

选择打赏方式:

微信

QQ钱包

支付宝

打赏

打赏

打赏

多少都是心意!谢谢大家!!!

×

选择分享方式:

微信扫一扫,分享朋友圈

Or

手机扫一扫,精彩随身带

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值