一、数值积分基本公式
数值求积基本通用公式如下
Eqn1.gif (1.63 KB, 下载次数: 40)
2009-11-20 23:23 上传
xk:求积节点
Ak:求积系数,与f(x)无关
数值积分要做的就是确定上式中的节点xk和系数Ak。可以证明当求积系数Ak全为正时,上述数值积分计算过程是稳定。
二、插值型数值积分公式
对f(x)给定的n+1个节点进行Lagrange多项式插值,故
Eqn2.gif (2.95 KB, 下载次数: 32)
2009-11-20 23:23 上传
即求积系数为
Eqn3.gif (3.29 KB, 下载次数: 32)
2009-11-20 23:23 上传
三、牛顿-柯特斯数值积分公式
当求积节点在[a,b]等间距分布时,插值型积分公式(先使用Lagrange对节点进行多项式插值,再计算求积系数,最后求积分值)称为Newton-Cotes积分公式。
由于Newton-Cotes积分是通过Lagrange多项式插值变化而来的,我们都知道高次多项式插值会出现Runge振荡现象,因此会导致高阶Newton-Cotes公式不稳定。
Newton-Cotes积分公式的求积系数为
Eqn4.gif (3.38 KB, 下载次数: 31)
2009-11-20 23:28 上传
其中C(k,n)称为柯特斯系数。
(1)当n=1时,Newton-Cotes公式即为梯形公式
Eqn5.gif (1.68 KB, 下载次数: 34)
2009-11-20 23:28 上传
容易证明上式具有一次代数精度(对于Newton-Cotes积分公式,n为奇数时有n次迭代精度,n为偶数时具有n+1次精度,精度越高积分越精确,同时计算量也越大)
(2)当n=2时,Newton-Cotes公式即为辛普森(Simpson)公式或者抛物线公式
Eqn6.gif (2.04 KB, 下载次数: 30)
2009-11-20 23:28 上传
上式具有3次迭代精度
(3)当n=4时,Newton-Cotes公式称为科特斯(Cotes)公式
Eqn7.gif (2.68 KB, 下载次数: 30)
2009-11-20 23:28 上传
上式具有5次迭代精度。由于n=3和n=2时具有相同的迭代精度,但是n=2时计算量小,故n=3的Newton-Cotes积分公式用的很少
(4)当≥8时,通过计算可以知道,在n=8时柯特斯系数出现负值
由于数值积分稳定的条件是求积系数Ak必须为正,所以n>=8以上高阶Newton-Cotes公式,我们不能保证积分的稳定性(其根本原因是,Newton-Cotes公式是由Lagrange插值多项推导出来的,而高阶多项式会出现Rung现象)。
四、复化求解公式
n阶Newton-Cotes公式只能有n+1个积分节点,但是高阶Newton-Cotes公式由不稳定。为了提高大区间的数值积分精度,我们采用了分段积分的方法,即先将原区间划分成若干小区间,然后对每一个小区间使用Newton-Cotes积分公式,这就是复化Newton-Cotes求积公式。
(1)当n=1时,称为复化梯形公式。将[a,b]等分为n份,子区间长度为h=(b-a)/n,则复化梯形公式为
(注意:复化求解公式不需要求积子区间等间距,只是Newton-Cotes公式分段积分时自动对小区间进行等分,我们这里采用等分子区间是为了便于计算而已)
Eqn8.gif (2.18 KB, 下载次数: 28)
2009-11-20 23:28 上传
(2)当n=2时,称为复化辛普森公式。
Eqn9.gif (2.96 KB, 下载次数: 25)
2009-11-20 23:28 上传
五、Newton-Cotes数值积分公式MATLAB代码
复化Newton-Cotes数值积分公式
function y=mulNewtonCotes(fun,a,b,m,n)
% 复化Newton-Cotes数值积分公式,即在每个子区间上使用Newton-Cotes公式,然后求和
% 参数说明
% fun,积分函数的句柄,必须能够接受矢量输入
% a,积分下限
% b,积分上限
% m,将区间[a,b]等分的子区间数量
% n,采用的Newton-Cotes公式的阶数,必须满足n<8,否则积分没法保证稳定性
% (1)n=1,即复化梯形公式
% (2)n=2,即复化辛普森公式
% (3)n=4,即复化科特斯公式
%
% Example
% fun=@(x)sin(x).*cos(x)
% mulNewtonCotes(fun,0,2,10,4)
%
% by dynamic of Matlab技术论坛
% see also http://www.matlabsky.com
% contact me matlabsky@gmail.com
% 2009-11-20 22:35:32
%
xk=linspace(a,b,m+1);
for i=1:m
s(i)=NewtonCotes(fun,xk(i),xk(i+1),n);
end
y=sum(s);复制代码牛顿-科特斯数值积分公式(全部代码参见附件)
function [y,Ck,Ak]=NewtonCotes(fun,a,b,n)
% y=NewtonCotes(fun,a,b,n)
% 牛顿-科特斯数值积分公式
%
% 参数说明:
% fun,积分表达式,这里有两种选择
% (1)积分函数句柄,必须能够接受矢量输入,比如fun=@(x)sin(x).*cos(x)
% (2)x,y坐标的离散点,第一列为x,第二列为y,必须等距,且节点的个数小于9,比如:fun=[1:8;sin(1:8)]'
% 如果fun的表采用第二种方式,那么只需要输入第一个参数即可,否则还要输入a,b,n三个参数
% a,积分下限
% b,积分上限
% n,牛顿-科特斯数公式的阶数,必须满足1<=n<=7,因为n>=8时不能保证公式的稳定性
% (1)n=1,即梯形公式
% (2)n=2,即辛普森公式
% (3)n=4,即科特斯公式
% y,数值积分结果
% Ck,科特斯系数
% Ak,求积系数
%
% Example
% fun1=@(x)sin(x);%必须可以接受矢量输入
% fun2=[0:0.1:0.5;sin(0:0.1:0.5)];%最多8个点,必须等距
% y1=NewtonCotes(fun1,0,0.5,6)
% y2==NewtonCotes(fun2)
%
% by dynamic of Matlab技术论坛
% see also http://www.matlabsky.com
% contact me matlabsky@gmail.com
% 2009-11-20 15:06:51复制代码