大数据考试机_2020年山东专升本考试大数据报告

现将2020年山东省专升本考试各项数据正式公开,以帮助尚处于备考阶段的考生,能够清晰的了解山东省专升本考试现状,进而有针对性地进行专业选择和备考。

01 报考人数概览

3a6c2d864ca9e51adf26fba1f5311e78.png2020年山东专升本考试参与考试人数62195人,共录取 44030+人,总体录取率超过 70.8%。(该录取人数仅为高校推荐考生,不含退伍士兵考生、建档立卡考生、自荐生。)

02 男生女生报考录取比例

c5884aee29947cae0169e61c70e9a81d.png

从性别角度分析,2020年山东省专升本考试中,女生报考人数占比以及录取占比均大于男生,其中录取总人数中,女生占比高于男生。

03 考点考生占比图

134cf2dbe882d013914a53cbdc9d5301.png

最受考生青睐的报考地区前三名分别是:济南市18.33%、青岛市15%、潍坊市13.33%,报考人数最少的地区是东营市、威海市、和聊城市,比率均为1.67%。

04 招生院校目录

53b9ee5f3ce71d9921e42c6b737c53bf.png (扫码查看最新各院校招生计划)

《2019年专升本招生考试报名工作的通知》明确指出:山东参与招生的专升本院校共有41所,这其中包括20所公立院校、21所独立学院及民办高校。

05 近三年考生人数变化对比

4f45daf494b215daa62a85463063dae6.png从近三年报考人数与录取人数来看,山东省专升本考生 录取人数呈上升趋势,预计2021年 报名人数将有所增长

06 专业大类招生占比

f4b95665042aa3bd53d687a1c4bbdcce.png

以2020年为例,10个招生专业大类中, 法学类招收计划最少 ,为510人,占总计划1.16%, 管理类招收计划最多 ,共计12775人,占总计划29.01%。

‍‍‍‍‍‍‍‍‍‍‍‍‍07 各大类、各专业考生最低投档线

2020年山东省专升本各大类内专业最低投档线图 60a50f054ef15102c57779a381039fba.png fbb8c0169ef3b0260e35da73b3c0590e.png fc64b20f528f1bee2e9198ae39a238bc.png 山东省专升本高校推荐考生各专业最低投档线图 (点击查看大图?) 596ec3f663895db6fe1ec4ad2f576d87.png 山东省专升本退伍士兵考生专业最低投档线图 (点击查看大图?) 8b570f5db2fe820f35a461e3d9caa9f6.png 山东省专升本建档立卡考生各专业最低投档线图 (点击查看大图?) 1063aeaf8ac3a203db4812b551c47337.png退役士兵与建档立卡考生在报考统招专升本考试时,相较于高校推荐考生, 有一定的录取优势。2020年山东专升本各专业录取分数线公布(点击链接了解专升本平行志愿投档线详细数据) 最后 针对教育部《职业教育提质培优行动计划》,2021-2023年专升本将“适当加大专升本招生计划”,为有意愿的高职(专科)毕业生提供继续深造的机会。 点亮在看 b2637101c28b3e7a7373d6f4569e0c31.gif 一起努力
动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值