python 立方体切割块数_用参数化su计算立方体切割体积

假设我有一个嵌入三维体积的二维曲面,例如球体的曲面,

其定义为r²=x²+y²+z²。现在我要计算立方体中这个曲面的切割所生成的体积。作为示例,请参见下图

aab7d08048b2137c603dc631230184df.png

所以在这种情况下,一个体积就是V=4/3πr³/8=π/8~0.5239,

什么是一种快速的高精度数值计算方法?

我的第一个想法是使用一个简单的monte-carlo方法,这个方法似乎有效,但是速度不够快,因为我必须对大约1000个立方体重复这个过程。例如:import numpy as np

def get_pi(n):

k = 10000

m = n/k

result = 0

for i in range(m): #split up n to save memory

x = np.random.rand(k)

y = np.random.rand(k)

z = np.random.rand(k)

r = np.sqrt(x**2+y**2+z**2)

t = r<1

result += np.sum(t)/float(k)*6

result /=m

return result

In [19]: get_pi(100000000)-np.pi

Out[19]: -9.6033589800370578e-05

In [28]: %timeit get_pi(100000000)

1 loops, best of 3: 4.98 s per loop

有没有更好的算法,或者至少有一种更快的方法?

谢谢你的建议。在

编辑:一般来说,这应该适用于所有类型的具有给定参数的曲面,如上述类型。而且立方体的位置可能与原点不同。在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值