Matlab 神经网数据预处理的函数
poststd 后处理由 PRESTD 预处理的数据
在 R2006a NNET 5.0 中已经过时最后用于 R2005b NNET 4.0.6
句法[p,t]=poststd(pn,meanp,stdp,tn,表示,stdt)
[p]=poststd(pn,meanp,stdp)
描述
poststd 后处理网络培训
设置由 PRESTD 预处理它转换
数据返回到非标准化单位
poststd 需要这些输入,
归一化输入向量的 PN - RxQ 矩阵
MEANP - 包含每个 P 的标准差的 Rx1 向量
包含每个 P 的标准偏差的 STDP - Rx1 载体
TN - 归一化目标矢量的 SxQ 矩阵
MEANT - 包含每个 T 的标准差的 Sx1 向量
STDT - Sx1 矢量包含每个 T 的标准偏差
并返回,
输入 (列) 向量的 P - RxQ 矩阵
目标向量的 T - SxQ 矩阵
例子
在这个例子中, 我们用一组训练数据进行归一化
PRESTD, 使用规范化的创建和训练网络
数据, 模拟网络, 对输出进行非标准化
网络使用 poststd, 并执行之间的线性回归
网络输出 (非标准化) 和检查目标
网络培训的质量p=[-0.920.73-0.470.740.29;-0.080.86-0.67-0.520.93];
t=[-0.083.4-0.820.693.1];
[pn,meanp,stdp,tn, 意思是, stdt] = prestd(p,t);net=newff(minmax(pn),[51],{tansigpurelin},trainlm);
net=train(net,pn,tn);
an=net(pn);
a=poststd(an,mean,stdt);
[m,b,r]=postreg(a,t);
来源: http://www.bubuko.com/infodetail-2525025.html