matlab主要数据预处理函数,Matlab 神经网数据预处理的函数

Matlab 神经网数据预处理的函数

poststd 后处理由 PRESTD 预处理的数据

在 R2006a NNET 5.0 中已经过时最后用于 R2005b NNET 4.0.6

句法[p,t]=poststd(pn,meanp,stdp,tn,表示,stdt)

[p]=poststd(pn,meanp,stdp)

描述

poststd 后处理网络培训

设置由 PRESTD 预处理它转换

数据返回到非标准化单位

poststd 需要这些输入,

归一化输入向量的 PN - RxQ 矩阵

MEANP - 包含每个 P 的标准差的 Rx1 向量

包含每个 P 的标准偏差的 STDP - Rx1 载体

TN - 归一化目标矢量的 SxQ 矩阵

MEANT - 包含每个 T 的标准差的 Sx1 向量

STDT - Sx1 矢量包含每个 T 的标准偏差

并返回,

输入 (列) 向量的 P - RxQ 矩阵

目标向量的 T - SxQ 矩阵

例子

在这个例子中, 我们用一组训练数据进行归一化

PRESTD, 使用规范化的创建和训练网络

数据, 模拟网络, 对输出进行非标准化

网络使用 poststd, 并执行之间的线性回归

网络输出 (非标准化) 和检查目标

网络培训的质量p=[-0.920.73-0.470.740.29;-0.080.86-0.67-0.520.93];

t=[-0.083.4-0.820.693.1];

[pn,meanp,stdp,tn, 意思是, stdt] = prestd(p,t);net=newff(minmax(pn),[51],{tansigpurelin},trainlm);

net=train(net,pn,tn);

an=net(pn);

a=poststd(an,mean,stdt);

[m,b,r]=postreg(a,t);

来源: http://www.bubuko.com/infodetail-2525025.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值